MHB Proving Even # of Transpositions for Identical Permutations

simo1
Messages
21
Reaction score
0
is there any easier way of proving that no matter how an identical permutation say (e) is written the number of transpositins is even.

my work
i tried let t_1...t_n be m transpositions then try to prove that e can be rewritten as a product of m-2transpositions.
i had x be any numeral appearing in one of the transpositions t_1...t_n where t_k=(xa) and t_k is the last transposition in e=t_1t_2...t_m. i tried this and it seems very long:(
 
Physics news on Phys.org
That is actually a difficult thing to prove, although it "seems" obvious it should be true.

This is the "standard" proof:

Consider the expression:

$\displaystyle m = \prod_{1\leq i < j \leq n} (i - j)$.

We define:

$\displaystyle \sigma(m) = \prod_{1 \leq i < j < \leq n} (\sigma(i) - \sigma(j))$ for $\sigma \in S_n$.

Note that if $\sigma$ is a transposition, that $\sigma(m) = -m$. Also note that no matter what permutation $\sigma$ is, we have:

$\sigma(m) = \pm m$.

Note also that if $\sigma = \tau\pi$ we have:

$\displaystyle\sigma(m) = \tau(\pi(m)) = \prod_{1 \leq i < j < \leq n} (\tau(\pi(i)) - \tau(\pi(j)))$

Now if a permutation $\sigma$ could be written as both an even number and odd number of transpositions, we obtain:

$m = -m \implies m = 0$, which is impossible, since all the factors of $m$ are non-zero (An odd number of transpositions changes the sign of $m$ an odd number of times, resulting in $-m$, and an even number of transpositions changes the sign of $m$ an even number of times, resulting in no change to $m$).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top