MHB Proving Even # of Transpositions for Identical Permutations

Click For Summary
The discussion focuses on proving that any identical permutation can be expressed using an even number of transpositions. One participant attempted a proof by analyzing transpositions but found it lengthy and complex. The standard proof involves examining the product of differences of permutation elements, showing that if a permutation could be both even and odd, it leads to a contradiction. This contradiction arises because an odd number of transpositions changes the sign of the product, while an even number does not. Ultimately, the proof reinforces that identical permutations can only be represented by an even number of transpositions.
simo1
Messages
21
Reaction score
0
is there any easier way of proving that no matter how an identical permutation say (e) is written the number of transpositins is even.

my work
i tried let t_1...t_n be m transpositions then try to prove that e can be rewritten as a product of m-2transpositions.
i had x be any numeral appearing in one of the transpositions t_1...t_n where t_k=(xa) and t_k is the last transposition in e=t_1t_2...t_m. i tried this and it seems very long:(
 
Physics news on Phys.org
That is actually a difficult thing to prove, although it "seems" obvious it should be true.

This is the "standard" proof:

Consider the expression:

$\displaystyle m = \prod_{1\leq i < j \leq n} (i - j)$.

We define:

$\displaystyle \sigma(m) = \prod_{1 \leq i < j < \leq n} (\sigma(i) - \sigma(j))$ for $\sigma \in S_n$.

Note that if $\sigma$ is a transposition, that $\sigma(m) = -m$. Also note that no matter what permutation $\sigma$ is, we have:

$\sigma(m) = \pm m$.

Note also that if $\sigma = \tau\pi$ we have:

$\displaystyle\sigma(m) = \tau(\pi(m)) = \prod_{1 \leq i < j < \leq n} (\tau(\pi(i)) - \tau(\pi(j)))$

Now if a permutation $\sigma$ could be written as both an even number and odd number of transpositions, we obtain:

$m = -m \implies m = 0$, which is impossible, since all the factors of $m$ are non-zero (An odd number of transpositions changes the sign of $m$ an odd number of times, resulting in $-m$, and an even number of transpositions changes the sign of $m$ an even number of times, resulting in no change to $m$).
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 26 ·
Replies
26
Views
881
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K