MHB Proving $f(n)+c=O(g(n))$ with $\lim_{n \to +\infty}f(n)=+\infty$

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion centers on proving that if \( f(n) = O(g(n)) \) and \( \lim_{n \to +\infty} f(n) = +\infty \), then \( f(n) + c = O(g(n)) \) for any constant \( c > 0 \). Participants clarify that while \( f(n) + c \) is indeed \( O(g(n)) \), it does not necessarily imply \( f(n) = \Theta(g(n)) \). The conversation emphasizes that for \( c = 0 \), the statement holds trivially, while for \( c > 0 \), the proof remains valid. There is a consensus that the original argument may have overreached by suggesting a stronger conclusion than warranted. The thread concludes with a focus on the implications of the limits and the behavior of the functions involved.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I want to show that $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ implies that $f(n)+c=O(g(n))$.

$f(n)=O(g(n))$ means that $\exists c_1>0, n_1 \in \mathbb{N}_0$ such that $\forall n \geq n_1$: $f(n) \leq c_1g(n)$.

$\lim_{n \to +\infty} f(n)=+\infty$ means that $\forall M>0 \exists n_2 \in \mathbb{N}_0$ such that $\forall n \geq n_2$: $f(n)>M$.

We want to show that $\exists c_2>0, n_0 \in \mathbb{N}_0$ such that $\forall n \geq n_0$: $f(n)+c<c_2 g(n)$

That's what I have tried:$$M<f(n) \leq c_1 g(n) \Rightarrow M+c < f(n)+c \leq c_1g(n)+c \Rightarrow \frac{M+c}{g(n)} < \frac{f(n)+c}{g(n)} \leq \frac{ c_1g(n)+c}{g(n)} \Rightarrow \lim_{n \to +\infty} \frac{M+c}{g(n)}< \lim_{n \to +\infty} \frac{f(n)+c}{g(n)} \leq \lim_{n \to +\infty} \frac{ c_1g(n)+c}{g(n)} \overset{\star}{\Rightarrow} 0<\lim_{n \to +\infty} \frac{f(n)+c}{g(n)} \leq c_1 \\ \Rightarrow \lim_{n \to +\infty} \frac{f(n)+c}{g(n)}=a \in (0,c_1] \Rightarrow f(n)+c=\Theta(g(n)) \Rightarrow f(n)+c=O(g(n)) $$$$ \star: f(n) \leq c_1 g(n) \wedge \lim_{n \to +\infty} f(n)=+\infty \Rightarrow \lim_{n \to +\infty} c_1 g(n)=+\infty \Rightarrow \lim_{n \to +\infty}g(n)=+\infty $$
 
Physics news on Phys.org
I think you proved too much. Take $c=0$. The fact that $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ does not imply that $f(n)=\Theta(g(n))$.
 
Evgeny.Makarov said:
I think you proved too much. Take $c=0$. The fact that $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ does not imply that $f(n)=\Theta(g(n))$.

I see (Nod) But it holds for all $c>0$.. Or am I wrong? (Thinking)
 
evinda said:
I see (Nod) But it holds for all $c>0$.
What do you see and what holds for all $c>0$?
 
For $c=0$ we don't have to show anything since $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ trivially implies that $f(n)+c=O(g(n))$.

For $c>0$ that what I wrote holds, or not? (Thinking)
 
evinda said:
For $c=0$ we don't have to show anything since $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ trivially implies that $f(n)+c=O(g(n))$.
Slowly exhales. Let's try this again.

Evgeny.Makarov said:
The fact that $f(n)=O(g(n))$ and $\lim_{n \to +\infty} f(n)=+\infty$ does not imply that $f(n)=\Theta(g(n))$.
I said this because you deduced $f(n)+c=O(g(n))$ from $f(n)+c=\Theta(g(n))$.
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K