Proving intersection of finitely many open sets is open

  • Thread starter Thread starter Eclair_de_XII
  • Start date Start date
  • Tags Tags
    Intersection Sets
Click For Summary
SUMMARY

The intersection of finitely many open sets, denoted as ##P_i## for ##1 \leq i \leq N##, is proven to be open. For any point ##x## in the intersection, there exist positive radii ##r_i## such that the open balls ##B(x, r_i)## are contained within each respective open set ##P_i##. By selecting the infimum of these radii, ##\rho##, it is established that ##B(x, \rho)## is also contained in the intersection ##\cap_{i=1}^N P_i##. This proof holds true for finite intersections, while it fails for infinite intersections due to the possibility of the infimum being zero.

PREREQUISITES
  • Understanding of open sets in topology
  • Familiarity with the concept of open balls, denoted as ##B(x, r)##
  • Knowledge of infimum and supremum in real analysis
  • Basic principles of set theory and intersections
NEXT STEPS
  • Study the properties of open sets in metric spaces
  • Learn about the implications of the Heine-Borel theorem
  • Explore examples of infinite intersections of open sets
  • Investigate the concept of compactness in topology
USEFUL FOR

Mathematicians, students of topology, and anyone interested in understanding the properties of open sets and their intersections in real analysis.

Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
Prompt in topic title. Proof describes a method in order to find an open ball centered around a point in the intersection. I assert the method will not work if there are infinitely many open sets in the intersection, which will not exclude the possibility that it will work.
Relevant Equations
Ball: A ball centered around some ##x## with radius ##r## is defined to be the set ##B(x,r):=\{y:|x-y|<r\}##.
Open: A set ##A## is open if for all ##x\in A##, there is a positive number ##r## such that ##B(x,r)\subset A##.
Define a collection of open sets to be denoted as ##P_i##, ##1\leq i\leq N## where ##N\in \mathbb{Z}^+##.

Let ##x\in\cap_{i=1}^N P_i##. By definition, ##x## must belong to every single ##P_i##.

In particular, ##x\in P_1## and ##x\in P_2##. Since ##P_1## and ##P_2## are open, there exist positive numbers ##r_1## and ##r_2## such that ##B(x,r_1)\subset P_1## and ##B(x,r_2)\in P_2##. Choose ##\inf\{r_2,r_1\}## and call it ##\rho_1##. We prove ##B(x,\rho_1)\in P_1\cap P_2##.

Let ##y\in B(x,\rho_1)##. Then ##|x-y|<\rho_1\leq r_1,r_2##. Hence,

##B(x,\rho_1)\subset B(x,r_1)\in P_1##
##B(x,\rho_1)\subset B(x,r_2)\in P_2##

By definition, ##B(x,\rho_1)\subset P_1\cap P_2##.

Now consider ##P_3##; there is ##r_3>0## such that ##B(x,r_3)\subset P_3##. Define ##\rho_2:=\inf\{\rho_2,r_3\}##. Then by similar reasoning above (in other words, change some variable names) ##B(x,\rho_2)## is contained in ##P_3## in addition to ##P_1\cap P_2##. Note that ##\rho_2=\inf\{r_1,r_2,r_3\}##

Continuing in this fashion, we obtain a decreasing sequence of ##\rho_i##, where ##1\leq i\leq N-1##. Suppose ##P_{N+1}## is an open set that ##x## also belongs to. Then there is ##r_{N+1}>0## such that ##B(x,r_{N+1})\subset P_{N+1}##. Set ##\rho_N=r_{N+1}## and ##r=\inf\{\rho_i\}_{i\in\mathbb{N}\cap [1,N]}##. By similar reasoning as above, ##B(x,r)\subset \cap_{i=1}^N P_i## and ##B(x,r)\subset P_{N+1}## which gives us our result.

Note that this choice of ##r## is invalid if there are infinitely many ##P_i## in the intersection, since in this case:

##\inf\{\rho_i\}_{i\in\mathbb{N}\cap [1,N]}=0##

%%%

Example of intersection of infinitely many open sets being open:

##\cap_{n\in\mathbb{Z}^+}(-n,n)=(1,1)##

Note: The method above would fail because the sequence ##\rho_i## in this case would be constant at ##\rho_i=1##. So I guess, the method would fail only if the sequence ##\rho_i## were strictly decreasing.

Example of intersection of infinitely many open sets not being open:

##\cap_{n\in\mathbb{Z}^+}(-\frac{1}{n},\frac{1}{n})=\{0\}##

%%%

I'm sure there is a less notation-heavy way of expressing this proof.
 
Last edited:
Physics news on Phys.org
Your method works, but is cumbersome. You can just take finite intersection directly and apply the same reasoning. There is no need to take two sets at a time.

The proof works for a finite number of sets because a finite set of positive numbers has a smallest number. It fails for an infinite set because an infinite set of positive numbers can have inf = 0. However, if inf > 0 the intersection is open.
 

Similar threads

Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K