MHB Proving K is a Subgroup of G: Subgroup Nesting in H and L

  • Thread starter Thread starter Jen917
  • Start date Start date
  • Tags Tags
    Subgroup
Jen917
Messages
3
Reaction score
0
Let H be a subgroup of G and let L be a subgroup of H. Prove that K is a subgroup of G.

This question seems very redundant to me, isn't anything in a subgroup automatically a subgroup of anything the larger group is a subgroup of. Can some one explain this proof to me?
 
Physics news on Phys.org
Jen917 said:
Let H be a subgroup of G and let L be a subgroup of H. Prove that K is a subgroup of G.

This question seems very redundant to me, isn't anything in a subgroup automatically a subgroup of anything the larger group is a subgroup of. Can some one explain this proof to me?

Hi again Jen917! (Wave)

Can I assume there is a typo, and that K and L are actually the same?

Then admittedly, the proof is pretty straight forward.
It's just that in math we can't assume that it's redundant.

To conclude that one set is a subgroup of another, we have to apply the definition of a subgroup, and verify if all conditions are fulfilled.
This would be an exercise in carefully reading and applying a definition.
Which proof do you have?
 
I like Serena said:
Hi again Jen917! (Wave)

Can I assume there is a typo, and that K and L are actually the same?

>>Yes! Sorry about the typo.

Then admittedly, the proof is pretty straight forward.
It's just that in math we can't assume that it's redundant.

>>Gotcha, I think I was overthinking it. The easy answer seemed just too easy!

To conclude that one set is a subgroup of another, we have to apply the definition of a subgroup, and verify if all conditions are fulfilled.
This would be an exercise in carefully reading and applying a definition.
Which proof do you have?

This was my idea:
K is a nonempty set and has an identity element, we know this because it is a subgroup of H.
K also contains the inverse of an element following the same logic.
Finally we know K is closed because it is a subgroup of H.
H is a subgroup of G, therefore K has all these characteristics within G and is a subgroup of G.

Is this the along the right idea?
 
Yep. (Nod)

Nitpick: the sentence about the inverse should be about 'any' element rather than 'an' element.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top