MHB Proving K is a Subgroup of G: Subgroup Nesting in H and L

  • Thread starter Thread starter Jen917
  • Start date Start date
  • Tags Tags
    Subgroup
Jen917
Messages
3
Reaction score
0
Let H be a subgroup of G and let L be a subgroup of H. Prove that K is a subgroup of G.

This question seems very redundant to me, isn't anything in a subgroup automatically a subgroup of anything the larger group is a subgroup of. Can some one explain this proof to me?
 
Physics news on Phys.org
Jen917 said:
Let H be a subgroup of G and let L be a subgroup of H. Prove that K is a subgroup of G.

This question seems very redundant to me, isn't anything in a subgroup automatically a subgroup of anything the larger group is a subgroup of. Can some one explain this proof to me?

Hi again Jen917! (Wave)

Can I assume there is a typo, and that K and L are actually the same?

Then admittedly, the proof is pretty straight forward.
It's just that in math we can't assume that it's redundant.

To conclude that one set is a subgroup of another, we have to apply the definition of a subgroup, and verify if all conditions are fulfilled.
This would be an exercise in carefully reading and applying a definition.
Which proof do you have?
 
I like Serena said:
Hi again Jen917! (Wave)

Can I assume there is a typo, and that K and L are actually the same?

>>Yes! Sorry about the typo.

Then admittedly, the proof is pretty straight forward.
It's just that in math we can't assume that it's redundant.

>>Gotcha, I think I was overthinking it. The easy answer seemed just too easy!

To conclude that one set is a subgroup of another, we have to apply the definition of a subgroup, and verify if all conditions are fulfilled.
This would be an exercise in carefully reading and applying a definition.
Which proof do you have?

This was my idea:
K is a nonempty set and has an identity element, we know this because it is a subgroup of H.
K also contains the inverse of an element following the same logic.
Finally we know K is closed because it is a subgroup of H.
H is a subgroup of G, therefore K has all these characteristics within G and is a subgroup of G.

Is this the along the right idea?
 
Yep. (Nod)

Nitpick: the sentence about the inverse should be about 'any' element rather than 'an' element.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
376
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K