MHB Proving Linear Dependence and Span in n-dimensional Space

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Span
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $1\leq n,k\in \mathbb{N}$ and let $v_1, \ldots , v_k\in \mathbb{R}^k$. Show that:
  1. Let $w\in \text{Lin}(v_1, \ldots , v_k)$. Then it holds that $\text{Lin}(v_1, \ldots , v_k)=\text{Lin}(v_1, \ldots , v_k,w)$.
  2. Let $v_1, \ldots , v_k$ be linearly dependent. Thn there is a $1\leq i\leq k$ and $\lambda_1, \ldots , \lambda_k$ such that $v_i=\lambda_1v_1+\ldots +\lambda_{i-1}v_{i-1}+\lambda_{i+1}v_{i+1}+\ldots +\lambda_nk_n$.
  3. Let $i_1, \ldots i_k\in \mathbb{N}$, such that $\{1, \ldots , k\}=\{i_1, \ldots , i_k\}$. Then it holds that $\text{Lin}(v_1, \ldots , v_k)=\text{Lin}(v_{i_1}, \ldots , v_{i_k})$.
  4. Let $v_1, \ldots , v_k$ be linearly dependent. Then there is a $1\leq i\leq k$ such that $\text{Lin}(v_1, \ldots , v_k)=\text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$.

I have already shown the first two points. Could you please give me a hint fot the point $3$ ? (Wondering) As for point $4$ : Do we use here the point $2$ ? Suppose $v_i=\lambda_1v_1 +\ldots \lambda_{i-1}v_{i-1}+\lambda_{i+1}v_{i+1}+\ldots +\lambda_kv_k$. Then it holds that $\text{Lin}(v_1, \ldots , v_k)\subseteq \text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$, or not?
No it is left to show that $\text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)\subset \text{Lin}(v_1, \ldots , v_k)$, or not?

Or is there an other for this proof?

(Wondering)
 
Physics news on Phys.org
For (3), what does "\{1, …, k\}= \{i_1, …, i_k\}" mean? With standard set notation that would just mean that v_1= v_{i_1}, …, v_k= v_{i_k} but then the problem is trivial. Or is the point that the order doesn't matter? Then the problem is almost trivial- just using the fact that vector addition is commutative.
 
mathmari said:
Hey! :o

Let $1\leq n,k\in \mathbb{N}$ and let $v_1, \ldots , v_k\in \mathbb{R}^k$. Show that:
4. Let $v_1, \ldots , v_k$ be linearly dependent. Then there is a $1\leq i\leq k$ such that $\text{Lin}(v_1, \ldots , v_k)=\text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$.

As for point $4$ : Do we use here the point $2$ ? Suppose $v_i=\lambda_1v_1 +\ldots \lambda_{i-1}v_{i-1}+\lambda_{i+1}v_{i+1}+\ldots +\lambda_kv_k$. Then it holds that $\text{Lin}(v_1, \ldots , v_k)\subseteq \text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$, or not?

Hey mathmari!

Normally we start from the definition.
From wiki:
The vectors in a subset $S=\{\vec v_1,\vec v_2,\dots,\vec v_k\}$ of a vector space $V$ are said to be ''linearly dependent'', if there exist scalars $a_1,a_2,\dots,a_k$, not all zero, such that
$$a_1\vec v_1+a_2\vec v_2+\cdots+a_k\vec v_k= \vec 0,$$
where $\vec 0$ denotes the zero vector.


Let $a_i$ be one of those scalars that is not zero.
Then:
$$a_1\vec v_1+a_2\vec v_2+\cdots+a_k\vec v_k= \vec 0
\implies \vec v_i = -\frac{1}{a_i}\left(a_1 \vec v_1+\cdots + a_{i-1}\vec v_{i-1}+ a_{i+1}\vec v_{i+1}+\cdots+a_k\vec v_k\right)
$$
So $\vec v_i \in \operatorname{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$, isn't it? (Wondering)
mathmari said:
No it is left to show that $\text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)\subset \text{Lin}(v_1, \ldots , v_k)$, or not?

Yes, and that follows from the definition of a linear span, doesn't it?
What is the definition of a linear span? (Wondering)
 
Klaas van Aarsen said:
Let $a_i$ be one of those scalars that is not zero.
Then:
$$a_1\vec v_1+a_2\vec v_2+\cdots+a_k\vec v_k= \vec 0
\implies \vec v_i = -\frac{1}{a_i}\left(a_1 \vec v_1+\cdots + a_{i-1}\vec v_{i-1}+ a_{i+1}\vec v_{i+1}+\cdots+a_k\vec v_k\right)
$$
So $\vec v_i \in \operatorname{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$, isn't it? (Wondering)

So this direction follows from point 2., doesn't t? (Wondering)
Klaas van Aarsen said:
Yes, and that follows from the definition of a linear span, doesn't it?
What is the definition of a linear span? (Wondering)

Let $x\in \text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)$. Then $x$ is a linear combination of the elements $v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k$, i.e. \begin{equation*}x=\lambda_1v_1+ \ldots + \lambda_{i-1}v_{i-1}+\lambda_{i+1} v_{i+1}+ \ldots+ \lambda_kv_k\end{equation*} Then we can write this element also as follows \begin{equation*}x=\lambda_1v_1+ \ldots + \lambda_{i-1}v_{i-1}+0\cdot v_i+\lambda_{i+1} v_{i+1}+ \ldots+ \lambda_kv_k\end{equation*} and now it is a linear combination of the elements $v_1, \ldots , v_{i-1}, v_i,v_{i+1}, \ldots, v_k$ and this means that $x\in \text{Lin}(v_1, \ldots , v_k)$.

So we get that $\text{Lin}(v_1, \ldots , v_{i-1}, v_{i+1}, \ldots, v_k)\subseteq \text{Lin}(v_1, \ldots , v_k)$. Is everything correct? (Wondering)

- - - Updated - - -

HallsofIvy said:
For (3), what does "\{1, …, k\}= \{i_1, …, i_k\}" mean? With standard set notation that would just mean that v_1= v_{i_1}, …, v_k= v_{i_k} but then the problem is trivial. Or is the point that the order doesn't matter? Then the problem is almost trivial- just using the fact that vector addition is commutative.

I am also a bit confused about the meaning. I think that your second assumption is meant, since the first were too easy. (Thinking)

So do we have to show that at the linear combination we can change the order of the vectors? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top