MHB Proving matrix group under addition for associative axiom

Click For Summary
SUMMARY

The discussion centers on proving that the set T, defined as 2x2 matrices with identical integral coefficients, forms an abelian group under addition. The proof demonstrates closure, the existence of an identity element, and the presence of additive inverses, confirming the group properties. Additionally, an alternative proof is suggested using an isomorphism mapping from the integers to the set T. The steps outlined are correct, although some redundant steps in the proof of associativity could be omitted.

PREREQUISITES
  • Understanding of group theory concepts, specifically abelian groups.
  • Familiarity with matrix operations, particularly matrix addition.
  • Knowledge of isomorphisms in algebra.
  • Basic comprehension of integral coefficients in mathematical contexts.
NEXT STEPS
  • Study the properties of abelian groups in group theory.
  • Learn about matrix operations and their applications in linear algebra.
  • Explore the concept of isomorphisms and their significance in algebraic structures.
  • Investigate examples of other sets that form groups under different operations.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in understanding the properties of groups and matrix operations will benefit from this discussion.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I have some feeling some uncertainty proving one of the axioms for a group. Here is the proof to show this is a group:
Let the set T be defined as a set of 2x2 square matrices with coefficients of integral values and all the entries are the same.
We want to show that T is an abelian group under addition. Let's denote that $(x)=\left[\begin{array}{cc}x&x\\x&x\end{array}\right]$.
Let $(a)$ and $(b)$ $\in T$ where (a),(b) are a arbitrary elements in the set T. Then by the definition of (a) and (b) as well the definition of matrix addition, So, \begin{equation}
(a)+(b)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
b & b \\
b & b
\end{array}\right]=\left[\begin{array}{cc}
a+b & a+b \\
a+b & a+b
\end{array}\right]= (a+b)\in T. \end{equation}
Let $(a)$ be an arbitrary element in the set $T$. Let $(e)=(0)$. Then, by the definition of the binary operation,
\begin{equation}
(a)+(0)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
a+0 & a+0 \\
a+0 & a+0\end{array}\right]=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=(a).\end{equation} And \begin{equation}
(0)+(a)=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=\left[\begin{array}{cc}
0+a & 0+a \\
0+a & 0+a\end{array}\right]=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=(a)
\end{equation}
Let $(a)$ be an arbitrary element in the set $T$. Let $(a')=(-a)$. Since the coefficients of the matrix is the set of integers, so the additive inverse for the integers is the negative element of the set of integers. Then, by the definition of the binary operation, \begin{equation}
(a)+(-a)=\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
-a & -a \\
-a & -a
\end{array}\right]=\left[\begin{array}{cc}
a-a & a-a \\
a-a & a-a\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=(0).
\end{equation}
And \begin{equation}
(-a)+(a)=\left[\begin{array}{cc}
-a & -a \\
-a & -a
\end{array}\right]+\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]=\left[\begin{array}{cc}
-a+a & -a+a \\
-a+a & -a+a\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=(0).
\end{equation}
Let $(a)$,$(b)$,$(c)$ $\in T$ where $(a),(b),(c)$ are a arbitrary elements in the set T. Then by the definition of (a),(b),(b) as well the definition of matrix addition, So, \begin{equation}
((a)+(b))+(c)=(\left[\begin{array}{cc}
a & a \\
a & a
\end{array}\right]+\left[\begin{array}{cc}
b & b \\
b & b
\end{array}\right])+\left[\begin{array}{cc}
c & c \\
c & c
\end{array}\right]=\left[\begin{array}{cc}
a+b & a+b \\
a+b & a+b
\end{array}\right]+\left[\begin{array}{cc}
c & c \\
c & c
\end{array}\right]=\left[\begin{array}{cc}
(a+b)+c & (a+b)+c \\
(a+b)+c & (a+b)+c
\end{array}\right]=\left[\begin{array}{cc}
(a+0+b)+c & (a+0+b)+c \\
(a+0+b)+c & (a+0+b)+c
\end{array}\right] =\left[\begin{array}{cc}
(a+0)+(b+c) & (a+0)+(b+c) \\
(a+0)+(b+c )& (a+0)+(b+c)
\end{array}\right]=\left[\begin{array}{cc}
a+(b+c) & a+(b+c) \\
a+(b+c )& a+(b+c)
\end{array}\right]=(a)+((b)+(c))\end{equation}.

Did I correctly prove the associative axiom correctly?

Thanks
Cbarker1
 
Physics news on Phys.org
Yes, your steps are correct (although there are a couple of redundant steps you could have skipped in the proof of associativity). Another way to prove the result is to show that the obvious mapping $f:\mathbb Z\to T;x\mapsto(x)$ is an isomorphism.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K