Nusc
- 752
- 2
Homework Statement
Prove the following statement:
ln|1+\sigma x | = \frac{1}{2} ln|1-x^2| + \frac{\sigma}{2} ln| \frac{ |1+x|}{|1-x|}<br />
Homework Equations
The Attempt at a Solution
Starting from right to left would be easier:
<br /> = \frac{1}{2} ln|(1+x)(1-x)| + \frac{\sigma}{2} ln| 1+x| - \frac{\sigma}{2} ln(1-x) \\<br /> = \frac{1}{2} [ ln(1+x) + ln(1-x) + \sigma ln(1+x) - \sigma ln(1-x)] \\<br /> =\frac{1}{2} [ln|(1+x)(1+\sigma)| + ln|(1-x)(1-\sigma)|] \\<br /> = \frac{1}{2} [ ln |(1+x)^{1+\sigma} (1-x)^{1-\sigma} |]\\<br /> = \frac{1}{2} ln |( 1+x ) (1+x)^\sigma \frac{1+x}{(1-x)^\sigma}|]<br />
Then I get stuck. Does anyone know what I'm missing?