MHB Proving operations of congruence modulo m

  • Thread starter Thread starter toni07
  • Start date Start date
  • Tags Tags
    Operations
Click For Summary
If integers a, b, and m are greater than zero and a is congruent to b modulo m, then it follows that a^n is congruent to b^n modulo m for all positive integers n. The congruence is denoted as a ≡ b (mod m), and the proof can be approached using mathematical induction on n. The inductive step requires showing that if the statement holds for n, it also holds for n+1. Additionally, expanding (b + km)^n using the binomial theorem can help in deriving the conclusion. This discussion emphasizes the importance of understanding congruences and their properties in modular arithmetic.
toni07
Messages
24
Reaction score
0
If a, b and m > 0 are integers such that a % b (mod m), then a^n % b^n (mod m) for all positive integers n. I don't know how to go about it, any help would be greatly appreciated.
 
Mathematics news on Phys.org
By '%', do you mean congruent? That's typically written
$$a \equiv b \;( \text{mod} \; m),\qquad \text{and}
\qquad a^{n} \equiv b^{n} \;( \text{mod} \; m).$$
Use induction on $n$ to prove this. What will you need to show the inductive step?
 
Welcome to MHB, crypt50! :)

Assuming you meant what Ackbach suggested, here's an alternative way.

The expression $a \equiv b \pmod m$ means that there is a $k \in \mathbb Z$ such that $a=b+km$.
This implies that $a^n=(b+km)^n$.
Can you expand the right hand side with the binomial theorem?
If so, what can you conclude?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K