MHB Proving Series Inequality: $\sqrt[3]{\frac{2}{1}}$ to $\frac{1}{8961}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality Series
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt[3]{\dfrac{2}{1}}+\sqrt[3]{\dfrac{3}{2}}+\cdots+\sqrt[3]{\dfrac{996}{995}}-\dfrac{1989}{2}<\dfrac{1}{3}+\dfrac{1}{6}+\cdots+\dfrac{1}{8961}$.
 
Mathematics news on Phys.org
Note that

$\dfrac{3k+1}{3k}+\dfrac{3k+2}{3k+1}+\dfrac{3k+3}{3k+2}=3+\dfrac{1}{3k}+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}$ and

$\dfrac{3k+1}{3k}\cdot\dfrac{3k+2}{3k+1}\cdot\dfrac{3k+3}{3k+2}=\dfrac{k+1}{k}$,

by the Arithmetic-Geometric Mean inequality, we have

$3+\dfrac{1}{3k}+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}>3\sqrt[3]{\dfrac{k+1}{k}}$

Then

$\displaystyle 3\sum_{k=1}^{995} \sqrt[3]{\dfrac{k+1}{k}}<3\sum_{k=1}^{995}\left( 3+\dfrac{1}{3k}+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}\right)$

and hence

$\displaystyle\begin{align*} 3\sum_{k=1}^{995} \sqrt[3]{\dfrac{k+1}{k}}-\dfrac{1989}{2}&<995-\dfrac{1989}{2}+\sum_{k=1}^{995}\dfrac{1}{3}\left( \dfrac{1}{3k}+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}\right)\\&=\dfrac{1}{2}+\left(\dfrac{1}{9}+\dfrac{1}{12}+\cdots+\dfrac{1}{8961}\right)\\&=\dfrac{1}{3}+\dfrac{1}{6}+\left(\dfrac{1}{9}+\dfrac{1}{12}+\cdots+\dfrac{1}{8961}\right)\end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top