MHB Proving sin⁻¹(ix): 2nπ ± i log (√1+x²+x)

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
The discussion focuses on proving the equation sin⁻¹(ix) = 2nπ ± i log(√(1+x²)+x). The user successfully proves the positive part, sin⁻¹(ix) = 2nπ + i log(√(1+x²)+x), but seeks assistance with the negative counterpart. The solution involves manipulating the equation sin z = (e^(iz) - e^(-iz))/(2i) = ix, leading to a quadratic equation for y. The final form of the proof shows that sin⁻¹(ix) can be expressed in terms of logarithmic functions, confirming the relationship for both cases. The discussion emphasizes the importance of understanding complex logarithms in this context.
Suvadip
Messages
68
Reaction score
0
I need to prove
$$sin^{-1}(ix)=2n\pi\pm i log (\sqrt{1+x^2}+x)$$

I can prove $$sin^{-1}(ix)=2n\pi+ i log (\sqrt{1+x^2}+x)$$

How to prove the other part. Please help
 
Physics news on Phys.org
suvadip said:
I need to prove
$$sin^{-1}(ix)=2n\pi\pm i log (\sqrt{1+x^2}+x)$$

I can prove $$sin^{-1}(ix)=2n\pi+ i log (\sqrt{1+x^2}+x)$$

How to prove the other part. Please help

You have to find the z for which is...

$\displaystyle \sin z = \frac{e^{i\ z}-e^{- i\ z}}{2\ i} = i\ x$ (1)

Setting in (1) $\displaystyle e^{i\ z}=y$ You arrive to the equation...$\displaystyle y^{2} + 2\ x\ y -1 =0 $ (2)... which is solved for $\displaystyle y= - x \pm \sqrt{1+x^{2}}$ so that is... $\displaystyle \sin^{-1} (i\ x) = 2\ \pi\ i\ n - i\ \ln (- x \pm \sqrt{1+x^{2}}) = 2\ \pi\ i\ n + i\ \ln (x \pm \sqrt{1+x^{2}})$ (3)

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K