I Proving SL_2(C) Homeomorphic to SU(2)xT & Simple Connectedness

aalma
Messages
46
Reaction score
1
Using the QR decomposition (the complex version) I want to prove that ##SL_2(C)## is homeomorphic to the product ##SU(2) × T## where ##T## is the set of upper-triangular 2×2-complex matrices with real positive entries at the diagonal. Deduce that ##SL(2, C)## is simply-connect.

So, I can define a map ##SU(2)×T–>SL(2,C)## given by: ##(u,t) –> ut## where ##u \in SU(2)## and ##t \in T## (from QR decomposition we have that each ##A## in ##GL(2,C)## can be written as ##ut## where ##u \in U(n)## and ##t \in T## (##T## mentioned above)).
We have that the intersection ##SU(2)\cap T=1##.
This map is injective:
if ##u_1t_1=u_2t_2## then this gives
##u_2^{-1}u_1=t_2t_1^{-1} \in SU(2)\cap T## so ##u_1=u_2## and ##t_1=t_2##.
Can I say that this map is surjective by the QR decomposition?
why is this map and its inverse contiuous?

Thanks for help!
 
Last edited:
Physics news on Phys.org
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
3
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 28 ·
Replies
28
Views
7K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 9 ·
Replies
9
Views
4K