Proving that a ring is non a PID

  • Context: MHB 
  • Thread starter Thread starter pantboio
  • Start date Start date
  • Tags Tags
    Pid Ring
Click For Summary
SUMMARY

The discussion centers on proving that the ring $$R=\mathbb{Z}[\sqrt{-13}]$$ is not a Principal Ideal Domain (PID) by analyzing the properties of ideals generated by primes $$p$$ in $$\mathbb{N}$$, specifically those not equal to 2 or 13. Key points include demonstrating that the ideal $$P=(p,a+b\sqrt{-13})$$, when multiplied by its conjugate $$\overline{P}=(p,a-b\sqrt{-13})$$, yields $$P\cdot\overline{P}=pR$$. Furthermore, it is established that if $$P$$ is principal, then $$p$$ must equal $$A^2+13B^2$$ for some integers $$A$$ and $$B$$, leading to the conclusion that $$\mathbb{Z}[\sqrt{-13}]$$ cannot be a PID.

PREREQUISITES
  • Understanding of ideal theory in ring theory
  • Familiarity with the properties of prime numbers in number theory
  • Knowledge of quadratic integers and their representations
  • Basic concepts of linear combinations in algebra
NEXT STEPS
  • Study the properties of ideals in Dedekind domains
  • Learn about the structure of quadratic fields, particularly $$\mathbb{Z}[\sqrt{-d}]$$
  • Investigate the conditions under which a ring is a Principal Ideal Domain
  • Explore examples of non-PID rings and their ideal structures
USEFUL FOR

Mathematicians, algebraists, and students of abstract algebra interested in ring theory, particularly those studying the properties of ideals in number fields and their implications for the structure of rings.

pantboio
Messages
43
Reaction score
0
Let $$R=\mathbb{Z}[\sqrt{-13}]$$, let $$p$$ be a prime in $$\mathbb{N}$$, $$p\neq 2,13$$. Suppose that $$p$$ divides an integer of the form $$a^2+13b^2$$, with $$a,b$$ integers and coprime. Let $$P=(p,a+b\sqrt{-13})$$ be the ideal generated in $$R$$ by $$p$$ and $$a+b\sqrt{-13}$$ and let $$\overline{P}=(p,a-b\sqrt{-13})$$.

1)Prove that $$P\cdot\overline{P}=pR$$

2)Prove that if $$P$$ is principal then $$p=A^2+13B^2$$ for some $$A,B$$ integers

3) Prove that if $$p=a^2+13b^2$$ then $$P$$ is principal

4) Deduce that $$\mathbb{Z}[\sqrt{-13}]$$ is not a PIDI have a proof of point 1). Indeed it is easily seen that $$P\cdot\overline{P}$$ can be generated by $$p^2,p(a\pm b\sqrt{-13}),a^2+13b^2$$, all elements of $$pR$$. Conversely, i proved that we may always suppose, without loss of generality, that $$p^2$$ does not divide $$a^2+13b^2$$ hence $$p=\gcd(p^2,a^2+13b^2)$$, and this last fact implies that $$p$$ can be expressed as $$\mathbb{Z}$$-linear combination of $$p^2$$ and $$a^2+13b^2$$, both elements of $$P\cdot\overline{P}$$ so that we get the inclusion $$pR\subseteq P\cdot\overline{P}$$.

For the other points, any help would be appreciated
 
Physics news on Phys.org
pantboio said:
Let $$R=\mathbb{Z}[\sqrt{-13}]$$, let $$p$$ be a prime in $$\mathbb{N}$$, $$p\neq 2,13$$. Suppose that $$p$$ divides an integer of the form $$a^2+13b^2$$, with $$a,b$$ integers and coprime. Let $$P=(p,a+b\sqrt{-13})$$ be the ideal generated in $$R$$ by $$p$$ and $$a+b\sqrt{-13}$$ and let $$\overline{P}=(p,a-b\sqrt{-13})$$.

1)Prove that $$P\cdot\overline{P}=pR$$

2)Prove that if $$P$$ is principal then $$p=A^2+13B^2$$ for some $$A,B$$ integers

3) Prove that if $$p=a^2+13b^2$$ then $$P$$ is principal

4) Deduce that $$\mathbb{Z}[\sqrt{-13}]$$ is not a PIDI have a proof of point 1). Indeed it is easily seen that $$P\cdot\overline{P}$$ can be generated by $$p^2,p(a\pm b\sqrt{-13}),a^2+13b^2$$, all elements of $$pR$$. Conversely, i proved that we may always suppose, without loss of generality, that $$p^2$$ does not divide $$a^2+13b^2$$ hence $$p=\gcd(p^2,a^2+13b^2)$$, and this last fact implies that $$p$$ can be expressed as $$\mathbb{Z}$$-linear combination of $$p^2$$ and $$a^2+13b^2$$, both elements of $$P\cdot\overline{P}$$ so that we get the inclusion $$pR\subseteq P\cdot\overline{P}$$.

For the other points, any help would be appreciated
For 2), suppose that $P$ is principal, say $P = (A+B\sqrt{-13})$, for some $A,\;B\in\mathbb{Z}$. Then $\overline{P} = (A-B\sqrt{-13})$, and $P\cdot\overline{P} = (A^2+13B^2)$. But $p\in P\cdot\overline{P}$ (by (1)), and so $p$ is a multiple of $A^2+13B^2$. Now use that fact that $p$ is prime in $\mathbb{Z}$ to deduce that $p=A^2+13B^2$.

For 3), if $p=a^2+13b^2 = (a+b\sqrt{-13})(a-b\sqrt{-13})$, then clearly $P = (a+b\sqrt{-13})$, which is principal.

For 4), you just need to find a prime $p$ in $\mathbb{Z}$ which is not of the form $a^2+13b^2$, but which has a multiple of that form (try $p=11$). Then by (1) and (2) $(p,a+b\sqrt{-13})$ is not principal.
 
Opalg said:
For 2), suppose that $P$ is principal, say $P = (A+B\sqrt{-13})$, for some $A,\;B\in\mathbb{Z}$. Then $\overline{P} = (A-B\sqrt{-13})$, and $P\cdot\overline{P} = (A^2+13B^2)$. But $p\in P\cdot\overline{P}$ (by (1)), and so $p$ is a multiple of $A^2+13B^2$. Now use that fact that $p$ is prime in $\mathbb{Z}$ to deduce that $p=A^2+13B^2$.

For 3), if $p=a^2+13b^2 = (a+b\sqrt{-13})(a-b\sqrt{-13})$, then clearly $P = (a+b\sqrt{-13})$, which is principal.

For 4), you just need to find a prime $p$ in $\mathbb{Z}$ which is not of the form $a^2+13b^2$, but which has a multiple of that form (try $p=11$). Then by (1) and (2) $(p,a+b\sqrt{-13})$ is not principal.
Almost all is clear now for me, thanks. According to your suggestion, i take the prime $$p=11$$, which is not of the form $$A^2+13\cdot B^2$$, but has a multiple, namely its square $$121$$ such that $$121=2^2+13\cdot 3^2$$ so that the ideal $$(11,2+3\sqrt{-13})$$ is not principal, thanks to 2). There are left only few questions I summarize as follows:

1) What is the role played by point 3) in all this?? I mean, I've used only 2) to state that the ideal is non-principal...?

2) Why (in the book where i found this exercise) are we prevented from taking $$p=2,13$$?
 
pantboio said:
1) What is the role played by point 3) in all this?? I mean, I've used only 2) to state that the ideal is non-principal...?
As far as I can see, (3) is not actually needed for the rest of the question. I suppose it is just there for its intrinsic interest. :confused:

pantboio said:
2) Why (in the book where i found this exercise) are we prevented from taking $$p=2,13$$?
In your proof of (1), you said "we may always suppose, without loss of generality, that $p^2$ does not divide $a^2+13b^2$".
You may find that supposition is not valid if $p=2$ or $13$.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 12 ·
Replies
12
Views
751
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K