Proving the Basic Identity of Fourier Series

Click For Summary
SUMMARY

The discussion focuses on proving the identity of Fourier series, specifically the equation \( e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2} \). Participants utilize Euler's formula \( e^{ik\theta} = \cos k\theta + i\sin k\theta \) and derive real sums for cosine and sine series. The proof is established through algebraic manipulation, confirming the identity through the relationship between exponential and trigonometric functions.

PREREQUISITES
  • Understanding of Euler's formula in complex analysis
  • Familiarity with trigonometric identities
  • Basic knowledge of series summation techniques
  • Experience with complex numbers and their properties
NEXT STEPS
  • Study the derivation of Euler's formula in detail
  • Explore the properties of Fourier series and their applications
  • Learn about complex analysis techniques for series convergence
  • Investigate the relationship between trigonometric functions and complex exponentials
USEFUL FOR

Mathematicians, physics students, and anyone interested in complex analysis and Fourier series applications will benefit from this discussion.

Dustinsfl
Messages
2,217
Reaction score
5
If you write
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$

Not to sure on what to do with this one.
 
Physics news on Phys.org
dwsmith said:
If you write
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$

Not to sure on what to do with this one.

Hi dwsmith, :)

\begin{eqnarray}

2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}&=&2i \sin\frac{\theta}{2}\left(\cos \frac{\theta}{2}+i\sin \frac{\theta}{2}\right)\\

&=&i\sin \theta-2\sin^{2} \frac{\theta}{2}\\

&=&i\sin \theta+\left(1-2\sin^{2} \frac{\theta}{2}\right)-1\\

&=&\left(i\sin \theta+\cos \theta\right)-1\\

&=&e^{i\theta} - 1

\end{eqnarray}

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K