MHB Proving the Basic Identity of Fourier Series

Click For Summary
The discussion focuses on proving the identity \( e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2} \) using properties of Fourier series. It begins with the expression \( e^{ik\theta} = \cos k\theta + i\sin k\theta \) and derives sums for cosine and sine functions. A user provides a detailed algebraic manipulation that confirms the identity by equating both sides. The proof successfully demonstrates how the exponential form relates to trigonometric functions. The discussion emphasizes the connection between complex exponentials and real trigonometric sums.
Dustinsfl
Messages
2,217
Reaction score
5
If you write
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$

Not to sure on what to do with this one.
 
Physics news on Phys.org
dwsmith said:
If you write
$$
e^{ik\theta} = \cos k\theta + i\sin k\theta,
$$
then $\sum\limits_{k = 0}^ne^{ik\theta} = \frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}$ yields two real sums
$$
\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)
$$
and
$$
\sum\limits_{k = 0}^n\sin k\theta = \text{Im}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right).
$$
Prove that
$$
e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}.
$$

Not to sure on what to do with this one.

Hi dwsmith, :)

\begin{eqnarray}

2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}&=&2i \sin\frac{\theta}{2}\left(\cos \frac{\theta}{2}+i\sin \frac{\theta}{2}\right)\\

&=&i\sin \theta-2\sin^{2} \frac{\theta}{2}\\

&=&i\sin \theta+\left(1-2\sin^{2} \frac{\theta}{2}\right)-1\\

&=&\left(i\sin \theta+\cos \theta\right)-1\\

&=&e^{i\theta} - 1

\end{eqnarray}

Kind Regards,
Sudharaka.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K