Proving the Limit of Cosine Squared: $\mathbb{Q}$ vs. Non-$\mathbb{Q}$

  • Context: MHB 
  • Thread starter Thread starter Lisa91
  • Start date Start date
  • Tags Tags
    Cosine Limit
Click For Summary
SUMMARY

The discussion centers on proving the limit of the cosine squared function as it relates to rational and irrational numbers, specifically expressed as $\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right)$. It is established that for rational numbers \(x \in \mathbb{Q}\), the limit equals 1, while for irrational numbers \(x \not\in \mathbb{Q}\), the limit equals 0. The Dirichlet function is referenced as a key concept in this proof, highlighting the behavior of the cosine function under factorial scaling.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with the Dirichlet function
  • Knowledge of rational and irrational numbers
  • Basic trigonometric functions, particularly cosine
NEXT STEPS
  • Study the properties of the Dirichlet function in depth
  • Explore proofs involving limits of trigonometric functions
  • Investigate the implications of factorial growth on limits
  • Learn about the convergence of sequences and series in calculus
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in the properties of rational versus irrational numbers in the context of limits and trigonometric functions.

Lisa91
Messages
29
Reaction score
0
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}. How to prove it?
 
Last edited by a moderator:
Physics news on Phys.org
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} 1 x \in \mathbb{Q}\\1 x \not\in \mathbb{Q}\end{array}\right.. How to prove it?

Hi Lisa91, :)

I think there is a typo in the right hand side of the equation. What do you mean by \(1x\)? Is it,

\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} x \in \mathbb{Q}\\1 \not\in \mathbb{Q}\end{array}\right.

Kind Regards,
Sudharaka.
 
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} 1 \in \mathbb{Q}\\ 0 \not\in \mathbb{Q}\end{array}\right.. How to prove it?

With great probability Lisa intends the Diriclet function defined as in...

Dirichlet Function -- from Wolfram MathWorld

$\displaystyle D(x)= \lim_{m \rightarrow \infty} \lim_{n \rightarrow \infty} \cos^ {2 n} (m!\ \pi\ x) = \left\{\begin{array}{l} 1 \in \mathbb{Q}\\ 0 \not\in \mathbb{Q}\end{array}\right.$ (1)

The 'proof' is relatively easy because if $x \in \mathbb{Q}$ then $x=\frac{p}{q}$ with p and q integer coprimes. Now if $m \rightarrow \infty$ for a certain $m>m_{0}$ q divides m! and it will be $\cos (m!\ \pi\ x) = \pm 1$. Anyway I personally have more than one doubt on the 'logical architecture' of the definition of the Diriclet Function...

Kind regards

$\chi$ $\sigma$
 
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}

No, this '2k' has to be in the place I wrote.
 
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}

No, this '2k' has to be in the place I wrote.

Also in this case if x is rational for any $n>n_{0}$ the term $n!\ x$ is an even integer so that for any k is $\cos \{(n!\ \pi\ x)^{2k}\}=1$. The problem however is when x is irrational because in this case [probably...] $\cos \{(n!\ \pi\ x)^{2k}\}$ has no limits in n and k... Kind regards $\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K