MHB Proving the Limit of Cosine Squared: $\mathbb{Q}$ vs. Non-$\mathbb{Q}$

  • Thread starter Thread starter Lisa91
  • Start date Start date
  • Tags Tags
    Cosine Limit
Click For Summary
The discussion centers on proving the limit of the expression involving cosine squared, specifically that the limit approaches 1 for rational values of x and 0 for irrational values. Participants clarify the formulation of the limit and address potential typographical errors in the original statement. The Dirichlet function is referenced as a means to establish the proof, highlighting that for rational x, the cosine evaluates to ±1 due to the divisibility of factorial terms. The challenge lies in the behavior of the cosine function for irrational x, where limits do not stabilize as n and k increase. Overall, the conversation emphasizes the mathematical nuances in proving this limit based on the rationality of x.
Lisa91
Messages
29
Reaction score
0
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}. How to prove it?
 
Last edited by a moderator:
Physics news on Phys.org
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} 1 x \in \mathbb{Q}\\1 x \not\in \mathbb{Q}\end{array}\right.. How to prove it?

Hi Lisa91, :)

I think there is a typo in the right hand side of the equation. What do you mean by \(1x\)? Is it,

\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} x \in \mathbb{Q}\\1 \not\in \mathbb{Q}\end{array}\right.

Kind Regards,
Sudharaka.
 
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \left\{\begin{array}{l} 1 \in \mathbb{Q}\\ 0 \not\in \mathbb{Q}\end{array}\right.. How to prove it?

With great probability Lisa intends the Diriclet function defined as in...

Dirichlet Function -- from Wolfram MathWorld

$\displaystyle D(x)= \lim_{m \rightarrow \infty} \lim_{n \rightarrow \infty} \cos^ {2 n} (m!\ \pi\ x) = \left\{\begin{array}{l} 1 \in \mathbb{Q}\\ 0 \not\in \mathbb{Q}\end{array}\right.$ (1)

The 'proof' is relatively easy because if $x \in \mathbb{Q}$ then $x=\frac{p}{q}$ with p and q integer coprimes. Now if $m \rightarrow \infty$ for a certain $m>m_{0}$ q divides m! and it will be $\cos (m!\ \pi\ x) = \pm 1$. Anyway I personally have more than one doubt on the 'logical architecture' of the definition of the Diriclet Function...

Kind regards

$\chi$ $\sigma$
 
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}

No, this '2k' has to be in the place I wrote.
 
Lisa91 said:
\lim_{n\to\infty} \left (\lim_{k\to\infty} \cos (\left| n! \pi x\right|) ^{2k} \right) = \begin{cases} 1&x \in \mathbb{Q} \\0& x \not\in \mathbb{Q}\end{cases}

No, this '2k' has to be in the place I wrote.

Also in this case if x is rational for any $n>n_{0}$ the term $n!\ x$ is an even integer so that for any k is $\cos \{(n!\ \pi\ x)^{2k}\}=1$. The problem however is when x is irrational because in this case [probably...] $\cos \{(n!\ \pi\ x)^{2k}\}$ has no limits in n and k... Kind regards $\chi$ $\sigma$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K