MHB Proving Z[√(-3)] is not a euclidean domain

  • Thread starter Thread starter hmmmmm
  • Start date Start date
  • Tags Tags
    Domain Euclidean
hmmmmm
Messages
27
Reaction score
0
I am trying to show that $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain, now I know that in every euclidean domain we have that an element is prime iff it is irreducible so I need to find an irreducible element of $\mathbb{Z}[\sqrt{-3}]$ that is not prime, I can't seem to think of one though, is there a general method for finding one?

Thanks for any help
 
Physics news on Phys.org
Re: Proving $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain

how about 2? 2 is irreducible, since N(ab) = N(2) = 4 implies N(a) = 1,2 or 4. if N(a) = 1, then a = 1 or -1, which are both units. there are no solutions to N(a) = 2, and if N(a) = 4, then b is a unit.

but 2 divides 4 = (1+√(-3))(1-√(-3)), and 2 does not divide either factor, so 2 is not prime.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top