MHB Proving Z[√(-3)] is not a euclidean domain

  • Thread starter Thread starter hmmmmm
  • Start date Start date
  • Tags Tags
    Domain Euclidean
hmmmmm
Messages
27
Reaction score
0
I am trying to show that $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain, now I know that in every euclidean domain we have that an element is prime iff it is irreducible so I need to find an irreducible element of $\mathbb{Z}[\sqrt{-3}]$ that is not prime, I can't seem to think of one though, is there a general method for finding one?

Thanks for any help
 
Physics news on Phys.org
Re: Proving $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain

how about 2? 2 is irreducible, since N(ab) = N(2) = 4 implies N(a) = 1,2 or 4. if N(a) = 1, then a = 1 or -1, which are both units. there are no solutions to N(a) = 2, and if N(a) = 4, then b is a unit.

but 2 divides 4 = (1+√(-3))(1-√(-3)), and 2 does not divide either factor, so 2 is not prime.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
Replies
21
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 84 ·
3
Replies
84
Views
10K
  • · Replies 5 ·
Replies
5
Views
790
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K