MHB Proving Z[√(-3)] is not a euclidean domain

  • Thread starter Thread starter hmmmmm
  • Start date Start date
  • Tags Tags
    Domain Euclidean
Click For Summary
The discussion focuses on proving that the ring $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain by identifying an irreducible element that is not prime. The participant suggests that the element 2 is irreducible, as its norm conditions lead to units or no solutions. However, 2 divides the product 4, which is expressed as the product of two factors, neither of which is divisible by 2. This demonstrates that 2 is irreducible but not prime, supporting the claim that $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain. The conversation highlights the relationship between irreducibility and primality in the context of this specific ring.
hmmmmm
Messages
27
Reaction score
0
I am trying to show that $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain, now I know that in every euclidean domain we have that an element is prime iff it is irreducible so I need to find an irreducible element of $\mathbb{Z}[\sqrt{-3}]$ that is not prime, I can't seem to think of one though, is there a general method for finding one?

Thanks for any help
 
Physics news on Phys.org
Re: Proving $\mathbb{Z}[\sqrt{-3}]$ is not a euclidean domain

how about 2? 2 is irreducible, since N(ab) = N(2) = 4 implies N(a) = 1,2 or 4. if N(a) = 1, then a = 1 or -1, which are both units. there are no solutions to N(a) = 2, and if N(a) = 4, then b is a unit.

but 2 divides 4 = (1+√(-3))(1-√(-3)), and 2 does not divide either factor, so 2 is not prime.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

Replies
48
Views
4K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 84 ·
3
Replies
84
Views
11K
  • · Replies 5 ·
Replies
5
Views
940
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K