MHB Proving Z[x] and Q[x] is not isomorphic

  • Thread starter Thread starter cbarker1
  • Start date Start date
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

What is the correct mapping between the polynomial rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$? The function $\phi$ is defined as $\phi(x^2+1)=\frac{1}{2}x$. I want to prove this problem by contradiction.

Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

I don't see what is the point of your function $\phi$: it is not even defined on the whole of $\mathbb{Z}$.

In reference to the title of you post, to prove that $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic, you could use the fact that $\mathbb{Q}[x]$ is a Euclidean domain, and therefore a principal ideal domain.

On the other hand, $\mathbb{Z}[x]$ is not a principal ideal domain; for example, in $\mathbb{Z}[x]$, the ideal $I =\langle x,2\rangle$ is not principal.
 
I can't use the principal ideal domain. Or Euclidean domain...because I have not learn about it yet.
 
Hi again,

In fact, it is even simpler. If $\theta:\mathbb{Z}[x]\to\mathbb{Q}[x]$ is an isomorphism, then $\theta(1) = 1$, because any ring homomorphism must map $1$ to $1$.

Now, in $\mathbb{Q}[x]$, we have $1 = \dfrac12+\dfrac12$. If $f(x)=\theta^{-1}(\dfrac12)$, we must have $f(x)+f(x) = 1$ in $\mathbb{Z}[x]$, and it is obvious that no integer polynomial satisfies that relation.

We have simply elaborated on the fact that $\mathbb{Z}$ is not isomorphic to $\mathbb{Q}$.
 
The point is that because they are not isomorphic, there is no "correct mapping"! If you wanted to prove that two rings are isomorphic then you would want to find a mapping that is an isomorphism. (But there still might not be a single "correct" one.)
 
I was trying to do a contradiction proof for that problem.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...