MHB Proving Z[x] and Q[x] is not isomorphic

  • Thread starter Thread starter cbarker1
  • Start date Start date
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

What is the correct mapping between the polynomial rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$? The function $\phi$ is defined as $\phi(x^2+1)=\frac{1}{2}x$. I want to prove this problem by contradiction.

Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

I don't see what is the point of your function $\phi$: it is not even defined on the whole of $\mathbb{Z}$.

In reference to the title of you post, to prove that $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic, you could use the fact that $\mathbb{Q}[x]$ is a Euclidean domain, and therefore a principal ideal domain.

On the other hand, $\mathbb{Z}[x]$ is not a principal ideal domain; for example, in $\mathbb{Z}[x]$, the ideal $I =\langle x,2\rangle$ is not principal.
 
I can't use the principal ideal domain. Or Euclidean domain...because I have not learn about it yet.
 
Hi again,

In fact, it is even simpler. If $\theta:\mathbb{Z}[x]\to\mathbb{Q}[x]$ is an isomorphism, then $\theta(1) = 1$, because any ring homomorphism must map $1$ to $1$.

Now, in $\mathbb{Q}[x]$, we have $1 = \dfrac12+\dfrac12$. If $f(x)=\theta^{-1}(\dfrac12)$, we must have $f(x)+f(x) = 1$ in $\mathbb{Z}[x]$, and it is obvious that no integer polynomial satisfies that relation.

We have simply elaborated on the fact that $\mathbb{Z}$ is not isomorphic to $\mathbb{Q}$.
 
The point is that because they are not isomorphic, there is no "correct mapping"! If you wanted to prove that two rings are isomorphic then you would want to find a mapping that is an isomorphism. (But there still might not be a single "correct" one.)
 
I was trying to do a contradiction proof for that problem.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
727
Replies
6
Views
1K
  • · Replies 26 ·
Replies
26
Views
691
Replies
21
Views
1K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
805
  • · Replies 4 ·
Replies
4
Views
2K