Pulse Duration (PD), Pulse Repetition Period (PRP) and Duty Factor (DF)

  • Thread starter Thread starter markieboy
  • Start date Start date
  • Tags Tags
    Pd Period Pulse
AI Thread Summary
The discussion focuses on understanding the relationships between pulse duration (PD), pulse repetition period (PRP), and duty factor (DF) in a waveform context. The initial attempts indicate that an increase in the number of cycles leads to an increase in PD and PRP, while DF remains constant. However, confusion arises regarding the definitions of pulse repetition frequency (PRF) and its impact on PRP and DF. Participants express uncertainty about the correctness of the answers provided and suggest that visual representations of waveforms could aid in comprehension. Clarifications on the definitions and relationships between these parameters are sought to resolve misunderstandings.
markieboy
Messages
1
Reaction score
2
Homework Statement
Pulse duration (PD) is the time from the start to the end of a pulse.
Pulse repetition period (PRP) is the time from the start of one pulse to the start of the next pulse.
Duty factor (DF) is the percentage of that time that sound is created by the transducer.

The number of cycles in each pulse increases:
1) The PD increases/decreases/stays the same.
2) The PRP increases/decreases/stays the same.
3) The DF increases/decreases/stays the same.

The number of pulses completed each second increases:
4) The PD increases/decreases/stays the same.
5) The PRP increases/decreases/stays the same.
6) The DF increases/decreases/stays the same.

The number of cycles completed each second increases:
7) The PD increases/decreases/stays the same.
8) The PRP increases/decreases/stays the same.
9) The DF increases/decreases/stays the same.
10) The number of cycles in each pulse increases/decreases/stays the same.
Relevant Equations
PD = (# of cycles)(period)
PRP = time/pulses
DF = (PD/PRP)*100
I attempted this assignment, and scored a 5/10. The solutions are not given until a later date. I need to understand this material before I progress to the next section. The following are my attempts at the solution.

The number of cycles in each pulse increases:
The PD is determined by the number of cycles and the period. If the number of cycles increases, the PD increases. One component of the PRP is the PD. So, the PRP increases. If both PD and PRP increases, the ratio of the DF stays the same.
1) The PD increases.
2) The PRP increases.
3) The DF stays the same.

The number of pulses completed each second increases:
This is the definition of PRF, which is the reciprocal of PRP. If PRF increases, PRP decreases. PD is not affected. It stays the same. Since only PRP decreases, DF increases.
4) The PD stays the same.
5) The PRP decreases.
6) The DF increases.

The number of cycles completed each second increases:
This is the definition of frequency, which is the reciprocal of period. PD is affected by the period. Frequency increases, period decreases. Therefore, PD will decrease. PRP will decrease. Since both decrease, the DF will remain the same. The number of cycles in each pulse stays the same.
7) The PD decreases.
8) The PRP decreases.
9) The DF stays the same.
10) The number of cycles in each pulse stays the same.

I am unsure what questions I got wrong. If someone can point out my errors, I would appreciate that very much.

Thank you!
 
Physics news on Phys.org
Hi @markieboy,
:welcome: !​

Could be my shortcoming, but in this story I miss something: am I supposed to assume a pulse consists of a number of cycles of a sound signal with a fixed frequency ?

That would explain the PD = (# of cycles)(period) relevant equation.

And then I agree with your 1) answer.
But why would that mean the PRP increases as well ? (your 2) answer )
Is there something in the full problem statement that gives you that impression ? Or did you type the full problem statement exactly as it was given to you ?
I would expect the signal generator to give a next pulse after a fixed time from the start of the previous pulse (not after the termination).
So I also disagree with your 3) answer

I agree with 6) 7) 8)

markieboy said:
PD is affected by the period
Why ? Number of cycles/second = frequency. The frequency increases but the PD can stay the same ?
That way PD, PRP and DF all three stay the same

Perhaps it's a good idea to make sketches of the waveforms ?

##\ ##
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top