Q: Rankine cycle pump work Integration

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Themodynamics
AI Thread Summary
The discussion centers on the Rankine cycle pump work, specifically the isentropic and isovolumic processes from state 1 to state 2. The isovolumic process indicates that the volume remains constant while the pressure changes, leading to the input work of the pump being calculated as w_pump,in = v(p2 - p1). In contrast, the isentropic process involves changes in both pressure and specific volume, which complicates the work calculation. The reference to pV^k = c highlights that this equation applies to adiabatic gaseous processes, while the Rankine cycle involves liquid, making the isovolumetric assumption more relevant. Understanding these distinctions is crucial for accurately analyzing the pump work in the Rankine cycle.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
To determine pump work
Relevant Equations
Open system, work integral equation
1688721171384.png

Why is the process from state 1 to state 2 an isentropic and isovolumic process, but the input work of the pump is (A) not (B)?
isovolumic process:
$$ w_{pump,in}=\ \int_{1}^{2}{vdp\ =\ v\left(p_2-p_1\right)}\ldots\ldots\ldots\ldots..\left(A\right) $$

isentropic process:
$$ \because pv^k=c\ \ \therefore c\ =\ \left( \frac{c}{p} \right) ^k $$
$$w_{pump,in}=\ \int_{1}^{2}{vdp\ =\int_{1}^{2}{{(\frac{c}{p})}^kdp}=\ \frac{c^k}{1-k}\left[p_2^{1-k}-p_1^{1-k}\right]}=\frac{1}{1-k}\left[{\left({p_2}^k{v_2}^k\right)p}_2^{1-k}-\left({p_1}^k{v_1}^k\right)p_1^{1-k}\right]=\frac{1}{1-k}\left[p_2{v_2}^k-p_1{v_1}^k\right]\ldots\ldots\ldots\ldots..\left(B\right)$$

reference
 
Physics news on Phys.org
##pV^k=c## is for an adiabatic gaseous process. This stage of the Rankine cycle is with a liquid, so theoretically isovolumetric.
 
  • Like
Likes tracker890 Source h
haruspex said:
##pV^k=c## is for an adiabatic gaseous process. This stage of the Rankine cycle is with a liquid, so theoretically isovolumetric.
Not only an adiabatic gaseous process; an ideal gas adiabatic process.
 
  • Like
Likes tracker890 Source h
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...

Similar threads

Back
Top