Q(sqrt(2)) and Q(sqrt(3)) not isomorphic?

  • Thread starter geor
  • Start date
  • #1
35
0

Main Question or Discussion Point

Hello all,

I am studying Algebra and in the chapter where Galois theory is introduced, I
see the following exercise:

"Prove that Q(sqrt(2)) and Q(sqrt(3)) are not isomorphic"

Well, It seems that I am a bit behind because I really don't get it... :(
I mean, I'm sure that this is the case, since it is a question in the book
(and surely 'not' is not a typo!!), but these are vector spaces over Q,
both of dimension 2, so shouldn't they be isomorphic by sending
sqrt(2) to sqrt(3) and any rational number to itself?!

What do I miss here?

Thanks a lot in advance..
 
Last edited:

Answers and Replies

  • #2
35
0
Ooops! I think I see it now..
They are isomorphic as vector spaces but not as fields, right?
The isomorphism I said above does not respect the product..

That's it, right?!
 
  • #3
Hurkyl
Staff Emeritus
Science Advisor
Gold Member
14,916
17
Right. (Have you yet shown there isn't a field isomorphism?)
 
  • #4
What more is true, is that given any square free intgers m and n, Q(sqrt(m)) and Q(sqrt(n)) are nonisomorphic. Intution serves right when you say that it "does not respect the product" but being more rigorous, show that no ismorphism can possibly exist between the two fields by first showing that any isomorphism fixes Q and that sqrt 2 (in this specific case) cannot be sent to any rational number, ie. sqrt 2 is sent to a+b*sqrt 3 for some nonzero rational b. This proof easily generalizes to square free m and n.
 
  • #5
35
0
Thanks a lot!!
 

Related Threads for: Q(sqrt(2)) and Q(sqrt(3)) not isomorphic?

  • Last Post
Replies
6
Views
3K
Replies
4
Views
4K
  • Last Post
Replies
9
Views
5K
  • Last Post
Replies
11
Views
2K
  • Last Post
Replies
8
Views
4K
  • Last Post
Replies
2
Views
16K
Replies
5
Views
4K
Replies
2
Views
3K
Top