Q(x) is a strictly convex function, show that G is positive definite

Click For Summary
SUMMARY

The discussion centers on proving that the symmetric matrix G is positive definite if the quadratic function q(x) is strictly convex. The quadratic function is defined as q(x) = (1/2)x^T G x + d^T x + c, where d is a constant vector and c is a scalar. The participants conclude that the strict convexity of q(x) implies that for any nonzero vector x, the expression x^T G x must be greater than zero, thereby establishing the positive definiteness of G.

PREREQUISITES
  • Understanding of quadratic functions and their properties
  • Knowledge of convex functions and their definitions
  • Familiarity with gradient and Hessian concepts in multivariable calculus
  • Basic linear algebra, particularly regarding symmetric matrices
NEXT STEPS
  • Study the implications of positive definiteness in optimization problems
  • Learn about the relationship between convexity and global minimizers
  • Explore the properties of symmetric matrices in linear algebra
  • Investigate the use of the Hessian matrix in determining function concavity and convexity
USEFUL FOR

Mathematicians, optimization specialists, and students studying advanced calculus or linear algebra who seek to understand the implications of convex functions and positive definite matrices in optimization contexts.

numbersense
Messages
4
Reaction score
0
Consider the quadratic function $\displaystyle q(\textbf{x}) = \frac{1}{2} \textbf{x}^T G \textbf{x} + \textbf{d}^T \textbf{x} + c$ on $\mathbb{R}^n$, where $\textbf{d}$ is a constant $n \times 1$ vector, $G$ is a constant $n \times n$ symmetric matrix and $c$ is a scalar.

The gradient is $\nabla q(\textbf{x}) = G \textbf{x} + \textbf{d}$ and the Hessian is $\nabla^2 q(\textbf{x}) = G$.

If $q(\textbf{x})$ is a strictly convex function then show that $G$ is positive definite.I am not sure whether I should start with the convex function definition or start by considering the gradient or the Hessian.

I tried expanding the inequality in the convex function definition but didn't get anywhere.

There is a proposition that says $f$ is strictly convext on $\mathbb{R}^n$ $\implies$ any stationary point is the unique global minimizer. (I can't even prove that a stationary point exists) Another theorem says that positive definiteness is a sufficient condition for being a unique global minimizer and positive semi definiteness is a necessary condition for being a local minimizer. I can't see how to use these statements to prove what the question is asking.
 
Mathematics news on Phys.org
numbersense said:
Consider the quadratic function $\displaystyle q(\textbf{x}) = \frac{1}{2} \textbf{x}^T G \textbf{x} + \textbf{d}^T \textbf{x} + c$ on $\mathbb{R}^n$, where $\textbf{d}$ is a constant $n \times 1$ vector, $G$ is a constant $n \times n$ symmetric matrix and $c$ is a scalar.

The gradient is $\nabla q(\textbf{x}) = G \textbf{x} + \textbf{d}$ and the Hessian is $\nabla^2 q(\textbf{x}) = G$.

If $q(\textbf{x})$ is a strictly convex function then show that $G$ is positive definite.I am not sure whether I should start with the convex function definition or start by considering the gradient or the Hessian.

I tried expanding the inequality in the convex function definition but didn't get anywhere.

There is a proposition that says $f$ is strictly convext on $\mathbb{R}^n$ $\implies$ any stationary point is the unique global minimizer. (I can't even prove that a stationary point exists) Another theorem says that positive definiteness is a sufficient condition for being a unique global minimizer and positive semi definiteness is a necessary condition for being a local minimizer. I can't see how to use these statements to prove what the question is asking.
I don't think you need to use the gradient or the Hessian to show that $G$ is positive definite. The fact that $q$ is strictly convex tells you that $q(\textbf{0}) <\frac12\bigl(q(\textbf{x}) + q(-\textbf{x})\bigr)$, for any nonzero vector $\textbf{x}.$ It follows very easily that $0 < \textbf{x}^T G \textbf{x}$.
 
Opalg said:
I don't think you need to use the gradient or the Hessian to show that $G$ is positive definite. The fact that $q$ is strictly convex tells you that $q(\textbf{0}) <\frac12\bigl(q(\textbf{x}) + q(-\textbf{x})\bigr)$, for any nonzero vector $\textbf{x}.$ It follows very easily that $0 < \textbf{x}^T G \textbf{x}$.

Thanks. It follows like this.
\begin{align*}
q\left(\frac{1}{2} \textbf{x} + \left(1 - \frac{1}{2}\right) (-\textbf{x})\right) = q(0) = c <& \frac{1}{2} q(\textbf{x}) + \left(1 - \frac{1}{2}\right) q(-\textbf{x}) = \textbf{x}^T G \textbf{x} + c\\
\textbf{x}^T G\textbf{x} >& 0
\end{align*}

This is quite clever. I didn't think of obtaining an inequality by using specific values in the convex function definition.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
2
Views
1K
Replies
48
Views
4K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K