TSny
Science Advisor
Homework Helper
Gold Member
- 14,797
- 4,796
The only way it makes sense to me is to take ##u_{x, y, z}## to be the x-component of velocity (relative to the cart) of the mass element ##\rho d\forall##. So, ##\int_{CV}^{}{u_{xyz}}\rho d\forall## gives the instantaneous x-component of momentum (relative to the cart frame) of the material inside the CV.tracker890 Source h said:So, does ##u_{xyz}## have different definitions in ##\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall## and ##\int_{CS}{u_{xyz}\rho}\vec{V}_{xyz}d\vec{A}##?
##u_{xyz}## has the same meaning in ##\int_{CS}{u_{xyz}\rho}\vec{V}_{xyz} \cdot d\vec{A}.\,\,\,\,## ##\vec{V}_{xyz}## is the velocity vector of the element ##\rho d\forall## relative to the cart frame. The integrand gives the flux of x-component of momentum through the surface element ##d\vec{A}## of the control surface.