I QED Renormalization Counterterm Confusion

Click For Summary
The discussion centers on the confusion regarding the photon propagator counterterm in Quantum Electrodynamics (QED) and its evaluation at ##q^2 = 0##. Participants clarify that the term ##q^{\mu}q^{\nu}## cannot be simply rewritten as ##g^{\mu\nu}q^{2}## without considering additional indices. The importance of the Ward-Takahashi identities is emphasized, indicating that no mass counterterm is necessary for the photon propagator due to its nature as a gauge boson. The photon-polarization tensor is discussed, highlighting its form and the implications for the propagator. Overall, the conversation seeks to clarify the treatment of the photon propagator in the context of renormalization conditions.
thatboi
Messages
130
Reaction score
20
Hey all,
When looking at the renormalization conditions for QED (see page 332, equation 10.40 from Peskin), there is a condition that requires the photon propagator at ##q^2 = 0## to evaluate to 0. But looking at the expression for the photon propagator counterterm: ##-i(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\delta_{3}##, can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}## and then the entire counterterm just disappears?
 
Physics news on Phys.org
thatboi said:
Hey all,
When looking at the renormalization conditions for QED (see page 332, equation 10.40 from Peskin), there is a condition that requires the photon propagator at ##q^2 = 0## to evaluate to 0. But looking at the expression for the photon propagator counterterm: ##-i(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\delta_{3}##, can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}## and then the entire counterterm just disappears?
Try writing your expression for the second term explicitly. What you wrote was
##\displaystyle q^{\mu} q^{\nu} = \left ( \sum_{\nu} g^{\mu \nu} q_{\nu} \right ) q^{\nu} = g^{\mu \nu} \left ( \sum_{\nu} q_{\nu} q^{\nu} \right ) = g^{\mu \nu} q^2##

Does this make sense?

-Dan
 
  • Like
  • Informative
Likes thatboi, vanhees71 and malawi_glenn
thatboi said:
can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}##
You need another index
##q^{\mu}q^{\nu} = g^{\mu\tau}q_{\tau}q^{\nu}## which is not equal to ##g^{\mu\nu}q^{2}##
 
  • Like
  • Informative
Likes dextercioby, thatboi, vanhees71 and 1 other person
Great, thanks a lot. As a followup question (let me know if I should make a new thread for this): For the renormalization condition Peskin evaluates the photon propagator at ##q^2 =0##, how do I deal with the ##q^{\mu}q^{\nu}## term?
 
What do you mean by "deal with"
 
malawi_glenn said:
What do you mean by "deal with"
As in equation (10.44) of Peskin's book. To get the counterterm ##\delta_{3}##, they set ##q^2=0## in the full propagator including counterterm, but then what happens to the ##q^{\mu}q^{\nu}## term?
 
thatboi said:
Great, thanks a lot. As a followup question (let me know if I should make a new thread for this): For the renormalization condition Peskin evaluates the photon propagator at ##q^2 =0##, how do I deal with the ##q^{\mu}q^{\nu}## term?
The photon is a gauge boson. That implies Ward-Takahashi identities which tell you that there is no mass generated by loop corrections and there's also no mass counterterm necessary to renormalize the photon propagator, i.e., there's only a wave-function renormalizing counter term. This implies that the photon-polarization tensor (aka photon self-energy tensor) is of the form
$$\Pi^{\mu \nu}(k)=k^2 \Pi(k) \left (g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^2} \right).$$
The Dyson equation then tells you that the photon propagor reads
$$D_{\gamma \perp}^{\mu \nu} = -\frac{\Theta^{\mu \nu}(k)}{k^2 (1-\Pi(k))}+D_{\gamma 0 \parallel}^{\mu \nu},$$
i.e., the longitudinal part is non-interacting, and the longitudinal photons are unphysical gauge-dependend pieces, which don't participate in any physical quantities, which are gauge invariant.

For details, see Sect. 6.6 in

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf

where I used the particularly elegant and simple background-field gauge description of QED.
 
  • Like
Likes thatboi, topsquark, malawi_glenn and 1 other person

Similar threads

Replies
3
Views
2K
Replies
3
Views
2K
Replies
5
Views
3K
Replies
4
Views
2K
Replies
10
Views
3K
Replies
7
Views
4K
Replies
5
Views
7K
Replies
1
Views
2K