QED Renormalization Counterterm Confusion

Click For Summary
SUMMARY

The discussion centers on the renormalization conditions for Quantum Electrodynamics (QED) as outlined in Peskin's textbook, specifically addressing the photon propagator's counterterm. The photon propagator counterterm is expressed as ##-i(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\delta_{3}##. A critical point raised is whether the term ##q^{\mu}q^{\nu}## can be simplified to ##g^{\mu\nu}q^{2}##, which is clarified to be incorrect without an additional index. The implications of the Ward-Takahashi identities are also discussed, indicating that no mass counterterm is necessary for the photon propagator, leading to a specific form of the photon-polarization tensor.

PREREQUISITES
  • Understanding of Quantum Electrodynamics (QED)
  • Familiarity with renormalization techniques
  • Knowledge of photon propagator expressions
  • Proficiency in tensor calculus and index notation
NEXT STEPS
  • Study the Ward-Takahashi identities in detail
  • Review the photon-polarization tensor derivation in QED
  • Examine the Dyson equation and its implications for propagators
  • Explore the background-field gauge approach to QED as discussed in Sect. 6.6 of the provided lecture notes
USEFUL FOR

The discussion is beneficial for theoretical physicists, particularly those specializing in quantum field theory, as well as graduate students studying QED and renormalization methods.

thatboi
Messages
130
Reaction score
20
Hey all,
When looking at the renormalization conditions for QED (see page 332, equation 10.40 from Peskin), there is a condition that requires the photon propagator at ##q^2 = 0## to evaluate to 0. But looking at the expression for the photon propagator counterterm: ##-i(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\delta_{3}##, can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}## and then the entire counterterm just disappears?
 
Physics news on Phys.org
thatboi said:
Hey all,
When looking at the renormalization conditions for QED (see page 332, equation 10.40 from Peskin), there is a condition that requires the photon propagator at ##q^2 = 0## to evaluate to 0. But looking at the expression for the photon propagator counterterm: ##-i(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\delta_{3}##, can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}## and then the entire counterterm just disappears?
Try writing your expression for the second term explicitly. What you wrote was
##\displaystyle q^{\mu} q^{\nu} = \left ( \sum_{\nu} g^{\mu \nu} q_{\nu} \right ) q^{\nu} = g^{\mu \nu} \left ( \sum_{\nu} q_{\nu} q^{\nu} \right ) = g^{\mu \nu} q^2##

Does this make sense?

-Dan
 
  • Like
  • Informative
Likes   Reactions: thatboi, vanhees71 and malawi_glenn
thatboi said:
can I not rewrite ##q^{\mu}q^{\nu} = g^{\mu\nu}q_{\nu}q^{\nu} = g^{\mu\nu}q^{2}##
You need another index
##q^{\mu}q^{\nu} = g^{\mu\tau}q_{\tau}q^{\nu}## which is not equal to ##g^{\mu\nu}q^{2}##
 
  • Like
  • Informative
Likes   Reactions: dextercioby, thatboi, vanhees71 and 1 other person
Great, thanks a lot. As a followup question (let me know if I should make a new thread for this): For the renormalization condition Peskin evaluates the photon propagator at ##q^2 =0##, how do I deal with the ##q^{\mu}q^{\nu}## term?
 
  • Like
Likes   Reactions: ohwilleke
What do you mean by "deal with"
 
  • Like
Likes   Reactions: topsquark
malawi_glenn said:
What do you mean by "deal with"
As in equation (10.44) of Peskin's book. To get the counterterm ##\delta_{3}##, they set ##q^2=0## in the full propagator including counterterm, but then what happens to the ##q^{\mu}q^{\nu}## term?
 
thatboi said:
Great, thanks a lot. As a followup question (let me know if I should make a new thread for this): For the renormalization condition Peskin evaluates the photon propagator at ##q^2 =0##, how do I deal with the ##q^{\mu}q^{\nu}## term?
The photon is a gauge boson. That implies Ward-Takahashi identities which tell you that there is no mass generated by loop corrections and there's also no mass counterterm necessary to renormalize the photon propagator, i.e., there's only a wave-function renormalizing counter term. This implies that the photon-polarization tensor (aka photon self-energy tensor) is of the form
$$\Pi^{\mu \nu}(k)=k^2 \Pi(k) \left (g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^2} \right).$$
The Dyson equation then tells you that the photon propagor reads
$$D_{\gamma \perp}^{\mu \nu} = -\frac{\Theta^{\mu \nu}(k)}{k^2 (1-\Pi(k))}+D_{\gamma 0 \parallel}^{\mu \nu},$$
i.e., the longitudinal part is non-interacting, and the longitudinal photons are unphysical gauge-dependend pieces, which don't participate in any physical quantities, which are gauge invariant.

For details, see Sect. 6.6 in

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf

where I used the particularly elegant and simple background-field gauge description of QED.
 
  • Like
Likes   Reactions: thatboi, topsquark, malawi_glenn and 1 other person

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K