Trifis
- 165
- 1
I think I have found a mistake/wrong formulation at Peskin’s, when he discusses the renormalization of QED.
In particular, he defines the 1PI of the electron’s self-energy on page 331 as: –i\Sigma( \displaystyle{\not}p ) and the corresponding counterterm on page 332 as: i( \displaystyle{\not}p \delta_2 - \delta_m ). It is then logical to assume that the combined term can be written in 1-loop order as:
–i\Sigma( \displaystyle{\not}p ) = –i<br /> \Sigma_2( \displaystyle{\not}p ) + i( \displaystyle{\not}p \delta_2-\delta_m )
Then if one uses the on-shell renormalization conditions (pg. 332):
\Sigma ( \displaystyle{\not}p = m) = 0
\frac{d}{d\displaystyle{\not}p} \Sigma( \displaystyle{\not}p )\bigg|_{\displaystyle{\not}p = m} = 0<br />
they yield the counterterms:
\delta_2 = \frac{d}{d\displaystyle{\not}p }\Sigma_2( \displaystyle{\not}p ) \bigg|_{\displaystyle{\not}p = m} and
\delta_m = -\Sigma_2(m) +m \delta_2
Peskin claims though that: \delta_m = -\Sigma_2(m)
I implore you to share any insights on the matter, cause this triviality is driving me crazy!
In particular, he defines the 1PI of the electron’s self-energy on page 331 as: –i\Sigma( \displaystyle{\not}p ) and the corresponding counterterm on page 332 as: i( \displaystyle{\not}p \delta_2 - \delta_m ). It is then logical to assume that the combined term can be written in 1-loop order as:
–i\Sigma( \displaystyle{\not}p ) = –i<br /> \Sigma_2( \displaystyle{\not}p ) + i( \displaystyle{\not}p \delta_2-\delta_m )
Then if one uses the on-shell renormalization conditions (pg. 332):
\Sigma ( \displaystyle{\not}p = m) = 0
\frac{d}{d\displaystyle{\not}p} \Sigma( \displaystyle{\not}p )\bigg|_{\displaystyle{\not}p = m} = 0<br />
they yield the counterterms:
\delta_2 = \frac{d}{d\displaystyle{\not}p }\Sigma_2( \displaystyle{\not}p ) \bigg|_{\displaystyle{\not}p = m} and
\delta_m = -\Sigma_2(m) +m \delta_2
Peskin claims though that: \delta_m = -\Sigma_2(m)
I implore you to share any insights on the matter, cause this triviality is driving me crazy!