In exercise 17.1 we are asked to show that the propagator:(adsbygoogle = window.adsbygoogle || []).push({});

$$G^+_o(p,t_x,q,t_y)=\theta(t_x-t_y)<0|\hat{a}_p(t_x)\hat{a}^\dagger_q(t_y)|0>$$ is the same as

$$\theta(t_x-t_y)e^{-i(E_pt_x-E_qt_y)}\delta^{(3)}(p-q)$$

so we can take the time dependence out of the creation and annihilation operators by using the time evolution operators giving us

$$\theta(t_x-t_y)<0|e^{iHt_x}\hat{a}_pe^{-iH(t_x-t_y)}\hat{a}^\dagger_q e^{-iHt_y}|0>$$

If I have this right, then the rightmost Hamiltonian acts on the ground state |0> to produce $$e^{-iE_gt_y}$$

The middle Hamiltonian acts on the ground state with a particle of momentum q added at times tx and ty to produce $$e^{-i(E_g+E_q)t_x-i(E_g+E_q)t_y}$$

The leftmost Hamiltonian acts on the ground state, the particle of momentum q and an annihilated particle p (which turns the energy negative?) at time tx producing $$e^{-i(E_g+E_q-E_q)t_x}$$

Putting this all together we arrive at the correct energy term $$e^{-i(E_pt_x-E_qt_y)}$$

Rewriting, $$G^+_o(p,t_x,q,t_y)=\theta(t_x-t_y)e^{-i(E_pt_x-E_qt_y)}<0|\hat{a}_p\hat{a}^\dagger_q|0>$$

So I am left with the questions:

1)what justifies the creation and annihilation operators combining to give the $$\delta^{(3)}(p-q)$$

2) where does the 3 come from on the $$\delta^{(3)}$$

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I QFT for the Gifted Amateur Question (3)

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**