QFT: Normalization of coherent states

Marioweee
Messages
18
Reaction score
5
Homework Statement
We can define a coherent state of scalar fields as ## \ket{\eta_k}=Ne^{A}\ket{0}## with ##A=\int \dfrac{d^3 k}{(2\pi)^3 \sqrt{2E_K}}\eta_k a^{\dagger}_{k} ## where the ##a_k## are the destruction operators of a real ##\phi## scalar field and ## \eta_k## functions of momentum k with sufficiently convergent behavior at infinity.
a) Compute N such that ##\braket{\eta_k | \eta_k}=1##.
Relevant Equations
##[a_p, a_{q}^{\dagger}]=(2\pi)^3 \delta^{(3)}(\vec{p}-\vec{q})##
##e^{X}=\sum_{i}^{\infty}\dfrac{X^i}{i!} ##
What I have done is the following:
\begin{equation}
\braket{\eta_k | \eta_k}=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\bra{0}(A^{\dagger})^nA^n\ket{0}=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\int \dfrac{d^{3n}kd^{3n}p}{(2\pi)^{3n}(2\pi)^{3n}\sqrt{(2E_k)^{n}}\sqrt{(2E_p)^{n}}}\eta^{n}_{k}\eta_{p}^{n}\bra{0}(a_{k}a^{\dagger}_{p})^{n}\ket{0}
\end{equation}
We know that ##\bra{0}a_{k}a^{\dagger}_{p}\ket{0}=\bra{0}[a_{k},a^{\dagger}_{p}]\ket{0}+\bra{0}a^{\dagger}_{p}a_{k}\ket{0}=(2\pi)^3 \delta^{(3)}(\vec{p}-\vec{k})\bra{0}\ket{0}=(2\pi)^3 \delta^{(3)}(\vec{p}-\vec{k})## since the action of the destruction operator on the void returns us a zero. But we want to calculate ## \bra{0}(a_{k}a^{\dagger}_{p})^n\ket{0}## , however, this is nothing more than ## \bra{0}(a_{k}a^{\dagger}_{p})(a_{k}a^{\dagger}_{p})(a_{k}a^{\dagger}_{p})...\ket{0}=(2\pi)^{3n} \delta^{(3n)}(\vec{p}-\vec{k})##

Therefore
\begin{equation}
\braket{\eta_k | \eta_k}=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\int \dfrac{d^{3n}kd^{3n}p}{(2\pi)^{3n}(2\pi)^{3n}\sqrt{(2E_k)^{n}}\sqrt{(2E_p)^{n}}}\eta^{n}_{k}\eta_{p}^{n}\bra{0}(a_{k}a^{\dagger}_{p})^{n}\ket{0}=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\int \dfrac{d^{3n}kd^{3n}p}{(2\pi)^{3n}(2\pi)^{3n}\sqrt{(2E_k)^{n}}\sqrt{(2E_p)^{n}}}\eta^{n}_{k}\eta_{p}^{n}(2\pi)^{3n} \delta^{(3n)}(\vec{p}-\vec{k})=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\int \dfrac{d^{3n}k}{(2\pi)^{3n}(2E_k)^{n}}\eta^{2n}_{k}=|N|^2\sum_{n=0}^{\infty}\dfrac{1}{n!}\left( \int \dfrac{d^{3}k}{(2\pi)^{3}(2E_k)}\eta^{2}_{k}\right)^n=|N|^2e^{\int \dfrac{d^{3}k}{(2\pi)^{3}(2E_k)}\eta^{2}_{k}}=1 \rightarrow N=e^{-\dfrac{1}{2}\int \dfrac{d^{3}k}{(2\pi)^{3}(2E_k)}\eta^{2}_{k}}
\end{equation}

Would this result be correct? If so, I have a doubt, since I have tried to make it more general since in principle we would need two sums for each exponential. I mean
\begin{equation}
\braket{\eta_k | \eta_k}=|N|^2\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\dfrac{1}{n!}\dfrac{1}{m!}\bra{0}(A^{\dagger})^nA^m\ket{0}=|N|^2\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\dfrac{1}{n!}\dfrac{1}{m!}\int \dfrac{d^{3n}kd^{3m}p}{(2\pi)^{3n}(2\pi)^{3m}\sqrt{(2E_k)^{n}}\sqrt{(2E_p)^{m}}}\eta^{n}_{k}\eta_{p}^{m}\bra{0}a_{k}^{n}(a^{\dagger}_{p})^{m}\ket{0}
\end{equation}
It is clear that for ##\bra{0}(a_{k}^{n}a^{\dagger}_{p})^{m}\ket{0}\neq 0 ## m and n must be equal and must appear in the equation ## \delta_{m,n}##. Now, if m is equal to n, we do the steps above. However, I find a problem with the factorial of n that appears twice, which does not allow to have the expression of the exponential. What am I doing wrong?
Thank you very much for any kind of help.
 
Last edited:
Physics news on Phys.org
This problem reduces drastically, down to merely a few lines if you know the Baker-Campbell-Hausdorff (BCH) formula $$e^{A+B} ~=~ e^A e^B e^{-[A,B]/2} ~,$$ which is true when ##[A,B]## commutes with both ##A## and ##B##.

You'll also need to use (or prove) the result that a (Glauber) coherent state is an eigenstate of the annihiliation operator, then use a generalized form of the commutation relations that says $$[a, f(a^\dagger)] ~=~ \hbar \frac{\partial}{\partial a^\dagger} \, f(a^\dagger) ~.$$ To complete this exercise properly, you should probably prove the latter, (e.g., by induction and a couple of other tricks).

Some of these utility formulas are probably mentioned in your textbook(s), no?
 
  • Like
Likes PhDeezNutz, vanhees71, topsquark and 1 other person
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top