I [QFT-Schwartz Page. 256] Violation of operator exponentiation rule ?

Click For Summary
The discussion centers on the application of operator exponentiation rules in quantum mechanics, particularly regarding the Hamiltonian expressed as ##\hat{H} = \frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j)##. It highlights a potential violation of the operator exponentiation rule, suggesting that the relation $$ e^{\frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j)} = e^{\frac{\hat{p}^2}{2m}}\times e^{\hat{V}(\hat{x_j},t_j)}$$ presupposes that the operators commute, which may not be generally true. The discussion further explores the implications of small time intervals, where the commutation relation ##[\hat A, \hat B]## is proportional to ##\delta t^2##, allowing for an approximation that simplifies the exponentiation. Ultimately, the conclusion reached is that under certain conditions, the approximation makes sense, validating the initial thought process.
Golak Bage
Messages
3
Reaction score
1
TL;DR
Schwartz derives path integral formulation from 'non-relativistic QM'.
When computing the projection of time-evoluted state ## |x_j> ## on ## |x_{j+1}> ## it uses the 'completeness' of momentum basis ## \int \frac{dp}{2\pi} |p><p| ##. Next it explicitly states the form of Hamiltonian ## \hat{H} = \frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j) ##. Thereafter i believe it uses the relation $$ e^{\frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j)} = e^{\frac{\hat{p}^2}{2m}}\times e^{\hat{V}(\hat{x_j},t_j)}.$$ This pre-supposes that ##[\hat{p},\hat{V}(\hat{x_j},t_j)]=0##. In QM for any two operators (say ##\hat{A}\ \&\ \hat{B} ##) ##e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##, therefore above relation doesn't appear general (it's more specific). I'd like some feedback on my thought.

Screenshot 2024-05-21 233704.png
 
  • Like
Likes dextercioby
Physics news on Phys.org
Golak Bage said:
##\large e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##

Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
 
  • Like
Likes dextercioby, Demystifier and Golak Bage
TSny said:
Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
Thank you. It actually makes sense.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...