I have a trouble showing proofs for matrix problems. I would like to know how
A is invertible -> det(A) not 0 -> A is linearly independent -> Column of A spans the matrix
holds for square matrix A. It would be great if you can show how one leads to another with examples! :)
Thanks for helping...
This is the question. The following is the solutions I found:
I understand that the first line was derived by setting one vertex on origin and taking the transpose of the matrix. However, I cannot understand where the extra row and column came from in the second line. Can anyone explain how...
question:
My first attempt:
my second attempt:
So I am getting 0 (the right answer) for the first method and 40 for the second method. According to the theorem, shouldn't the determinant of the matrix remain the same when the multiple of one row is added to another row? Can anyone explain...
I assumed a column vector of degree 3 and then calculated A from the given condition.But after solving it i tried to find A2 and then I got stuck as none of the options seem to match.
Please help.
I think i will have to learn LATEX.🙁🙁
Summary: different methods give different results. They are not consistent.
Summary: different methods give different results. They are not consistent.
I use two different methods to detect whether a matrix is singular. The result of calculating the determinant of a 9-order square matrix is...
I have a matrix equation (left side) that needs to be formatted into another form (right side). I've simplified the left side as much as I could but can't seem to get it to the match the right side. I am unsure if my matrix algebra skills are lacking or if I somehow messed up the starting...
The transformation matrix for a beam splitter relates the four E-fields involved as follows:
$$
\left(\begin{array}{c}
E_{1}\\
E_{2}
\end{array}\right)=\left(\begin{array}{cc}
T & R\\
R & T
\end{array}\right)\left(\begin{array}{c}
E_{3}\\
E_{4}
\end{array}\right)
\tag{1}$$
Here, the amplitude...
Is it correct saying that the Exponential limit is an exact solution for passing from a Lie Algebra to a Lie group because a differential manifold with Lie group structure is such that for any point of the transformation the tangent space is by definition the Lie algebra: is that the underlying...
Hi! I have a simple set of nonlinear equations
1) 3x = 30
2) x+2y = 20
3) x + y*z = 15
Clearly the solution to this is (10,5,1) but I want to find a robust way to solve this type of problem [A]x=b (where [A] is a simple function of x) which doesn't involve numerically solving using Newtons...
I am currently studying Fisher's formalism as part of parameter estimation.
From this documentation :
They that Fisher matrix is the inverse matrix of the covariance matrix. Initially, one builds a matrix "full" that takes into account all the parameters.
1) Projection : We can then do...
Homework Statement
Find the eigenvalues and eigenvectors fro the matrix: $$
A=\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} $$.
Homework Equations
Characteristic polynomial: ## \nabla \left( t \right) = t^2 - tr\left( A \right)t + \left| A \right|## .
The Attempt at a Solution
I've found...
Mentor note: Member warned that an attempt must be shown.
1. Homework Statement
This question is from book Afken Weber, Mathematics for Physicist.
An operator ##T(t + ε,t)## describes the change in the wave function from t to t + ##\epsilon## . For ##\epsilon## real and small enough so that...
I have the following matrix given by a basis \left|1\right\rangle and \left|2\right\rangle:
\begin{bmatrix}
E_0 &-A \\
-A & E_0
\end{bmatrix}
Eventually I found the matrix eigenvalues E_I=E_0-A and E_{II}=E_0+A and eigenvectors \left|I\right\rangle = \begin{bmatrix}
\frac{1}{\sqrt{2}}\\...
Homework Statement
Given this matrix:
I am asked to find values of the coefficient of the second value of the third row that would make it impossible to proceed and make elimination break down.
Homework Equations
Gaussian elimination methods I used given here...
Homework Statement
We can treat the following coupled system of differential equations as an eigenvalue
problem:
## 2 \frac{dy_1}{dt} = 2f_1 - 3y_1 + y_2 ##
## 2\frac{dy_2}{dt} = 2f_2 + y_1 -3y_2 ##
## \frac{dy_3}{dt} = f_3 - 4y_3 ##
where f1, f2 and f3 is a set of time-dependent sources, and...
Homework Statement
[/B]
The trace of a matrix is defined to be the sum of its diaganol matrix elements.
1. Show that Tr(ΩΛ) = Tr(ΩΛ)
2. Show that Tr(ΩΛθ) = Tr(θΩΛ) = Tr(ΛθΩ) (the permutations are cyclic)
my note: the cross here U[+][/+]is supposed to signify the adjoint of the unitary matrix U...
Homework Statement
About an endomorphism ##A## over ##\mathbb{C^{11}}## the next things are know.
$$dim\, ker\,A^{3}=10,\quad dim\, kerA^{2}=7$$
Find the
a) Jordan canonical form of ##A##
b) characteristic polynomial
c) minimal polynomial
d) ##dim\,kerA##
When:
case 1: we know that ##A## is...
Hello, I'm trying to understand how to calculate de probability of finding a system in a specific eigenstate using the density operator. In the book of Balian, Haar, Gregg I've found a good definition of it being the expectation value of the projector Pr in the orientation of the eingenstate...
So I ran into an case I have not seen before. Say we have a system of 3 equations such that W´=AW, where W=(x(t),y(t),z(t)) and A is a 3x3 matrix. The way I usually approach these is by finding the eigenvalues of A to then find the eigenvectors and thus find the ¨homogenous¨ solution. What...
C \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{m \times n}, W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{n \times k}, S \in \mathbb{R}^{m \times m}, P \in \mathbb{R}^{n \times n}
##{S}## and ##{P}## are similarity matrices (symmetric).
##\lambda##, ##\alpha## and ##\beta## are...
Im trying to implement the implicit Euler method in high-performance software for micromagnetic simulations, where I'm restricted to using the driving function of the ODE (Landau-Lifshitz equation) and the previous solution points. This obviously not a problem for an explicit method, since we...
I am having trouble proving that two multivariate formulas are equivalent. I implemented them in MATLAB and numerically they appear to be equivalent.
I would appreciate any help on this.
Prove A = B
A = (Σπ^-1 + Σy^-1)^-1 * (Σπ^-1*π + Σy^-1*y)
y = π+ X*β
Σπ =τ*Σ
Σy = X' * Σβ * X + Σε
B...
Homework Statement
Consider the set of operations in the plane that includes rotations by an angle about the origin and reflections about an axis through the origin. Find a matrix representation in terms of 2x2 matrices of the group of transformations (rotations plus reflections) that leaves...
Homework Statement
Homework Equations
A=LU, U^-1 * L^-1= A^-1 , U^-1 * L^-1 * U^-1 * L^-1 = A^-2,
The Attempt at a Solution
I used MATLAB and the relations:
U^-1 * L^-1= A^-1 , U^-1 * L^-1 * U^-1 * L^-1 = A^-2,
to find a solution
I found U^-1*L^-1 , let =B...