Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

QM and Crook's Fluctuation Theorem

  1. Jul 26, 2015 #1
    Is there a bridge from QM to Crook's Fluctuation Theorem and/or the Jarzynski Equality?

    More ambiguously, but maybe more directly, Is there thought to be a relationship between the QM-entanglement/decoherence/interference, and the SLOT?

    I am worried I may be missing a discussion of this, due to lack of understanding of terms.
     
  2. jcsd
  3. Jul 26, 2015 #2

    atyy

    User Avatar
    Science Advisor

    What is SLOT?
     
  4. Jul 26, 2015 #3
    Second Law of Thermodynamics.

    I got that acronym from somewhere on this forum. A lot less typing obviously.

    Gotta put my electronic device into airplane mode for a few hours...
     
  5. Jul 26, 2015 #4

    atyy

    User Avatar
    Science Advisor

    I might be wrong, but I believe the answer is "no". IIRC Crook's and Jarzynski's assume heat baths, so in a sense the quantum mechanics is already not pure. (Again, I am not terribly sure of this.)

    However, there is work on getting from pure QM to the second law of thermodynamics - going back all the way to guess who - von Neumann! Yes, he was a great guy and thought about physics very physically, thinking hidden variables important enough to explore, even if he made a mistake in interpreting his theorem. Here are some recent papers that will point the way to the literature.

    http://arxiv.org/abs/1007.3957
    Strong and weak thermalization of infinite non-integrable quantum systems
    Mari Carmen Bañuls, J. Ignacio Cirac, Matthew B. Hastings

    http://arxiv.org/abs/1506.07494
    Thermal equilibrium of a macroscopic quantum system in a pure state
    Sheldon Goldstein, David A. Huse, Joel L. Lebowitz, Roderich Tumulka

    http://arxiv.org/abs/1507.06479
    Typicality of thermal equilibrium and thermalization in isolated macroscopic quantum systems
    Hal Tasaki

    http://arxiv.org/abs/1507.00262
    Generalization of von Neumann's Approach to Thermalization
    Peter Reimann
     
  6. Jul 26, 2015 #5
    I tried to just get a feel for what question those papers were asking. If I understand correctly they were all trying to imagine what thermal dissipation looks like in the evolution of an unobserved many body QM system, given some Hamiltonian. Very interesting. So cool that in the first paper a numerical simulation of that process seems to go rogue!

    I was more interested whether the boundary information proposed in @Demystifier's onion-like AdS/CFT model, which is how I had been picturing it (roughly of course) could be envisioned as a heat bath (information has temperature right) doing work on our bulk - via an analog of Crook's Probability Work theorem. Smolin's recent "maximal variety" paper seems to fit somehow, right in there,
     
    Last edited: Jul 26, 2015
  7. Jul 26, 2015 #6

    atyy

    User Avatar
    Science Advisor

  8. Jul 28, 2015 #7
    Found this in an old thread. Exactly the angle I was trying to get at.

    http://arxiv.org/abs/quant-ph/0605031
    Irreversibility in Collapse-Free Quantum Dynamics and the Second Law of Thermodynamics
    M. B. Weissman
    (Submitted on 2 May 2006)
    Proposals to solve the problems of quantum measurement via non-linear CPT-violating modifications of quantum dynamics are argued to provide a possible fundamental explanation for the irreversibility of statistical mechanics as well. The argument is expressed in terms of collapse-free accounts. The reverse picture, in which statistical irreversibility generates quantum irreversibility, is argued to be less satisfactory because it leaves the Born probability rule unexplained.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: QM and Crook's Fluctuation Theorem
  1. Ehrenfest Theorem QM (Replies: 7)

Loading...