iamalexalright
- 157
- 0
For a particle in a potential V(x), calculate [H,p]
H = \frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} + V(x)
p = -i\hbar \frac{\delta}{\delta x}
[H,p] =
Hp - pH =
\frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} * -i\hbar \frac{\delta}{\delta x} + V(x)-i\hbar \frac{\delta}{\delta x} - -i\hbar \frac{\delta}{\delta x}\frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} - -i\hbar \frac{\delta}{\delta x}V(x) =
i\frac{\hbar^{3}}{2m}\frac{\delta^{3}}{\delta x^{3}} - V(x)ih\frac{\delta}{\delta x} - i\frac{\hbar^{3}}{2m}\frac{\delta^{3}}{\delta x^{3}} + i\hbar \frac{\delta}{\delta x}V(x) =
i\hbar \frac{\delta}{\delta x}V(x) - V(x)ih\frac{\delta}{\delta x}
Given \Delta A \Delta B \geq |<C>|/2 with |<C>| = [A,B], find
\Delta A \Delta B
<C> = \int \Psi^{*}(i\hbar \frac{\delta}{\delta x}V(x) - V(x)ih\frac{\delta}{\delta x})\Psi dx
Can I go from there? Is any of this correct?
H = \frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} + V(x)
p = -i\hbar \frac{\delta}{\delta x}
[H,p] =
Hp - pH =
\frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} * -i\hbar \frac{\delta}{\delta x} + V(x)-i\hbar \frac{\delta}{\delta x} - -i\hbar \frac{\delta}{\delta x}\frac{-\hbar^2}{2m}\frac{\delta^{2}}{\delta x^{2}} - -i\hbar \frac{\delta}{\delta x}V(x) =
i\frac{\hbar^{3}}{2m}\frac{\delta^{3}}{\delta x^{3}} - V(x)ih\frac{\delta}{\delta x} - i\frac{\hbar^{3}}{2m}\frac{\delta^{3}}{\delta x^{3}} + i\hbar \frac{\delta}{\delta x}V(x) =
i\hbar \frac{\delta}{\delta x}V(x) - V(x)ih\frac{\delta}{\delta x}
Given \Delta A \Delta B \geq |<C>|/2 with |<C>| = [A,B], find
\Delta A \Delta B
<C> = \int \Psi^{*}(i\hbar \frac{\delta}{\delta x}V(x) - V(x)ih\frac{\delta}{\delta x})\Psi dx
Can I go from there? Is any of this correct?