QR decomposition with permutation matrix

Click For Summary

Discussion Overview

The discussion revolves around the QR decomposition with a permutation matrix, specifically questioning the correct formulation of the matrix \( R \) in relation to the matrices \( G_i \) and \( P_j \). Participants explore the implications of different definitions and expressions related to QR and LR decompositions.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants question whether \( R = G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A \) or \( G_3P_1G_2P_0G_1A = R \) is the correct formulation, noting that it depends on the definitions of \( G_i \) and \( P_j \).
  • Others suggest that both expressions are equivalent but not the same, emphasizing the importance of obtaining a right upper matrix through multiplication.
  • A participant presents a series of transformations using the Gauss elimination method, leading to a specific matrix \( R \) and questions the correctness of the expressions from earlier posts.
  • There is a suggestion that the discussion may actually pertain to LR decomposition rather than QR decomposition, with concerns raised about the orthogonality of the resulting \( Q \).
  • Several participants express uncertainty about the correctness of the expression \( R = G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A \), with some agreeing that it appears incorrect.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct expression for \( R \). There are competing views regarding the definitions and implications of the matrices involved, and the discussion remains unresolved regarding the nature of the decomposition (QR vs. LR).

Contextual Notes

Participants note that the resulting matrix \( Q \) is not orthogonal, which raises questions about the validity of the QR decomposition approach being discussed.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

At the QR-decomposition with permutation matrix is the matrix $R$ equal to $R=G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A$ or $G_3P_1G_2P_0G_1A=R$? Which is the correct one? Or are these two equivalent?
In general, it holds that $QR=PA$, right?

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
At the QR-decomposition with permutation matrix is the matrix $R$ equal to $R=G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A$ or $G_3P_1G_2P_0G_1A=R$? Which is the correct one? Or are these two equivalent?
Hey mathmari!

It depends on how we define the $G_i$ and $P_j$ to say which one we should use.
The important part is that we get indeed a right upper matrix when we multiply them.
Other than that, those 2 expressions are equivalent but not the same. 🤔

mathmari said:
In general, it holds that $QR=PA$, right?
According to wiki, we have $QR=AP$. 🤔
 
I have done the following : \begin{align*}\begin{pmatrix}3 & 1 & -3 & 2 \\ -2 & 1 & 0 & 0 \\ 2 & -2 & 4 & 1 \\ 0 & -1 & -1 & 3\end{pmatrix} & \ \overset{Z_2:Z_2+\frac{2}{3}\cdot Z_1}{\longrightarrow} \ \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & \frac{5}{3} & -2 & \frac{4}{3} \\ 2 & -2 & 4 & 1 \\ 0 & -1 & -1 & 3\end{pmatrix} \\ & \overset{Z_3:Z_3-\frac{2}{3}\cdot Z_1}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & \frac{5}{3} & -2 & \frac{4}{3} \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & -1 & -1 & 3\end{pmatrix} \\ & \overset{Z_2\leftrightarrow Z_3}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & \frac{5}{3} & -2 & \frac{4}{3} \\ 0 & -1 & -1 & 3\end{pmatrix} \\ & \overset{Z_3:Z_3+\frac{5}{8}\cdot Z_2}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & 0 & \frac{7}{4} & \frac{9}{8}\\ 0 & -1 & -1 & 3\end{pmatrix} \\ & \overset{Z_4:Z_4-\frac{3}{8}\cdot Z_2}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & 0 & \frac{7}{4} & \frac{9}{8}\\ 0 & 0 & -\frac{13}{4} & \frac{25}{8}\end{pmatrix} \\ & \overset{Z_3 \leftrightarrow Z_4}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & 0 & -\frac{13}{4} & \frac{25}{8} \\ 0 & 0 & \frac{7}{4} & \frac{9}{8} \end{pmatrix} \\ & \overset{Z_4 : Z_4+\frac{7}{13}\cdot Z_3}{\longrightarrow} \begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & 0 & -\frac{13}{4} & \frac{25}{8} \\ 0 & 0 & 0 & \frac{73}{26} \end{pmatrix} \end{align*}
After the Gauss elimination method do we get the matrix $R=G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A$ : \begin{equation*}R=\begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -\frac{8}{3} & 6 & -\frac{1}{3} \\ 0 & 0 & -\frac{13}{4} & \frac{25}{8} \\ 0 & 0 & 0 & \frac{73}{26} \end{pmatrix} \approx\begin{pmatrix}3 & 1 & -3 & 2 \\ 0 & -2,6667 & 6 & -0,3333 \\ 0 & 0 & -3,25 & 3,125 \\ 0 & 0 & 0 & 2,8077 \end{pmatrix}\end{equation*}
From the steps of Gauss method we get the matrices \begin{equation*}G_1=\begin{pmatrix}1 & 0 & 0 &0 \\ \frac{2}{3} & 1 & 0 & 0 \\ -\frac{2}{3} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \ , \ G_2=\begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{5}{8} & 1 & 0 \\ 0 & -\frac{3}{8} & 0 & 1\end{pmatrix} \ \text{ and } \ G_3=\begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{7}{13} & 1\end{pmatrix}\end{equation*}
We have the permutation matrices \begin{equation*}P_0=\begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ \text{ and } \ P_1=\begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\end{equation*} We have \begin{equation*}P=P_1\cdot P_0=\begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}\end{equation*}
We have that:
\begin{equation*}G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\cdot A = R \Rightarrow A=\left (G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\right )^{-1}\cdot R \Rightarrow PA=P\cdot \left (G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\right )^{-1}\cdot R\end{equation*} So we have that $PA=QR$ with $Q=P\cdot \left (G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\right )^{-1}$.
\begin{align*}Q&=P\cdot \left (G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\right )^{-1}=P\cdot G_1^{-1}\cdot P_0^{-1}\cdot G_2^{-1}\cdot P_1^{-1}\cdot G_3^{-1}\\ & = \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ -\frac{2}{3} & 1 & 0 & 0 \\ \frac{2}{3} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{5}{8} & 1 & 0 \\ 0 & \frac{3}{8} & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{7}{13} & 1\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ -\frac{2}{3} & 1 & 0 & 0 \\ \frac{2}{3} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{5}{8} & 1 & 0 \\ 0 & \frac{3}{8} & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{7}{13} & 1 \\ 0 & 0 & 1 & 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ -\frac{2}{3} & 1 & 0 & 0 \\ \frac{2}{3} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & -\frac{5}{8} & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{3}{8} & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{7}{13} & 1 \\ 0 & 0 & 1 & 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 & 0 &0 \\ \frac{2}{3} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1
\\ -\frac{2}{3} & 1 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & -\frac{5}{8} & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{3}{8} & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{7}{13} & 1 \\ 0 & 0 & 1 & 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 & 0 &0 \\ \frac{2}{3} & 1 & 0 & 0 \\ 0 & \frac{3}{8} & 0 & 1
\\ -\frac{2}{3} & -\frac{5}{8} & 1 & 0\end{pmatrix} \cdot \begin{pmatrix}1 & 0 & 0 &0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{7}{13} & 1 \\ 0 & 0 & 1 & 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 & 0 &0 \\ \frac{2}{3} & 1 & 0 & 0 \\ 0 & \frac{3}{8} & 1 & 0
\\ -\frac{2}{3} & -\frac{5}{8} & -\frac{7}{13} & 1\end{pmatrix} \\ & \approx \begin{pmatrix}1 & 0 & 0 &0 \\ 0,6667 & 1 & 0 & 0 \\ 0 & 0,375 & 1 & 0
\\ -0,6667 & -0,625 & -0,5385 & 1\end{pmatrix} \end{align*} Which of the expressions of #1 is the correct one? :unsure:
 
mathmari said:
Which of the expressions of #1 is the correct one?

You have defined the matrices $G_i$ and $P_j$ such that $G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\cdot A = R$ haven't you? 🤔
So that is the correct expression.
What were you uncertain about? (Wondering)

However, didn't you do an LR-decomposition with permutation rather than a QR-decomposition? :unsure:
Note that the resulting $Q$ is not orthogonal.
 
Last edited:
Klaas van Aarsen said:
You have defined the matrices $G_i$ and $P_j$ such that $G_3\cdot P_1\cdot G_2\cdot P_0\cdot G_1\cdot A = R$ haven't you? 🤔
So that is the correct expression.
What were you uncertain about? (Wondering)

So the expression $R=G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A$ is wrong, isn't it? :unsure:
Klaas van Aarsen said:
However, didn't you do an LR-decomposition with permutation rather than a QR-decomposition? :unsure:
Note that the resulting $Q$ is not orthogonal.

Ah yes, it is the LR-decomposition. (Malthe)
 
mathmari said:
So the expression $R=G_3^{-1}P_1G_2^{-1}P_0G_1^{-1}A$ is wrong, isn't it?

It looks wrong to me yes. :unsure:
 
Klaas van Aarsen said:
It looks wrong to me yes. :unsure:

Ok! Thanks! :geek:
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K