MHB Quadratic equations intersaction point is minimum instead of roots

gevni
Messages
25
Reaction score
0
I have 2 quadratic functions and I am interested in their root in the specific range. I use quadratic equation to get their roots and what I find that if their any real solution exist for both or any of the function that lie in it designated specific range, then the roots are maximum or minimum to the intersection point of range.

Let say here the intersection point is 5:

f(g) is for range [0<n<=5]
and
f(x) is for range [5<=n<10]

for f(g) real root using quadratic equation is 4.3 that lies within its range and results in equation =0 however, the minimum value of the first derivative I got is n=5 instead of n=4.3. And it is always the case and vice versa for f(x). How do I prove that intersection point in the range is always be the minimum solution?
 
Mathematics news on Phys.org
Can you clarify your question please? I didn't understand, what curves intersect: two parabolic curves each others, or parabolic curve and x-axis, or something else? Maybe provide a numerical example about your problem? That could make your question clearer too.(up)
 
Sorry about the confusion! Let me re-write my problem:

$$
{GIVEN } \\
0 < x \le 5 \implies 0 < f(x) \le 5 \text { and } f(x) \text { is continuous,}\\
and \\
5 \le x < 10 \implies 5 \le g(x) < 10 \text { and } g(x) \text { is continuous,}\\
$$

if f(x) or g(x) are not in the range then I am not interested, I am only interested in the case if roots are real and in range. I am trying to find the roots of both function individually and if roots are real and in range then the extrema is always on intersection point not on the roots that I got from quadratic equation, that is 5 in above case. How to prove it?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top