- #1
diracdelta
- 55
- 0
Homework Statement
Find diagonal shape of next quadratic form ( using eigenvalues and eigenvectors)
Q(x,y)= 5x2 + 2y2 + 4xy.
What is curve { (x,y)∈ ℝ| Q(x,y)= λ1λ2, where λ1 and λ2 are eigenvalues of simetric matrix joined to quadratic form Q. Draw given curve in plane.
The Attempt at a Solution
[/B]
Matrix for given form is [tex]A= \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}[/tex]
[tex]k_{a}(\lambda )= det(\lambda I - A)= \begin{vmatrix} 5-\lambda & 2 \\ 2 & 2-\lambda \end{vmatrix}= \\(5-\lambda)(2-\lambda) - 4=0\\ \lambda_{1}=1\\ \lambda_{2}=6[/tex]Spectre of A ={1,6}
For λ=1
[tex]\begin{bmatrix} 4 &2 \\ 2& 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}[/tex]
[tex]y=-2x\\ v(x,-2x) = x(1,-1) [/tex]
(lets call it v1)
For λ=6
[tex]\begin{bmatrix} -1 &2 \\ 2& -4 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}[/tex]
[tex]y=\frac{1}{2}x\\ v=(x, \frac{1}{2}x)=x(1,\frac{1}{2})[/tex]
lets call this on v2
Ok, now i need to find the norm of both vectors.
[tex]\mid \mid v_{1}\mid \mid=\frac{1}{\sqrt{2}} (1,-1)[/tex]
[tex]\mid \mid v_{2}\mid \mid =\frac{\sqrt{5}}{2} (1,\frac{1}{2})[/tex]
Ok, so what am i supposed to do now?