Quantization of the electromagnetic field

Click For Summary
SUMMARY

The discussion focuses on the quantization of the electromagnetic field, specifically how to express static electric (E) and magnetic (B) fields using annihilation (a-) and creation (a+) operators along with frequency (ω). Participants explore the transition from classical to quantum descriptions, emphasizing the use of the Klein-Gordon (KG) Hamiltonian and the introduction of a new field (ψ) related to the original field (φ) through a fixed function (K). The conversation also touches on the ground state of the field in the presence of a spatially-dependent source (J) and the implications for the Stark effect in quantum mechanics.

PREREQUISITES
  • Understanding of quantum field theory concepts, including annihilation and creation operators.
  • Familiarity with the Klein-Gordon Hamiltonian and its applications.
  • Knowledge of coherent states in quantum mechanics.
  • Basic principles of electrostatics and magnetostatics in classical physics.
NEXT STEPS
  • Study the derivation and implications of the Klein-Gordon Hamiltonian in quantum field theory.
  • Learn about coherent states and their significance in quantum mechanics.
  • Research the Stark effect and its treatment in quantum electrodynamics.
  • Explore the relationship between classical and quantum descriptions of electromagnetic fields.
USEFUL FOR

Physicists, quantum field theorists, and students of advanced quantum mechanics seeking to deepen their understanding of electromagnetic field quantization and its applications in phenomena like the Stark effect.

Konte
Messages
90
Reaction score
1
TL;DR
quantization, electromagnetic field
Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
 
Physics news on Phys.org
Konte said:
Summary:: quantization, electromagnetic field

Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
In quantum theory a "situation" is described by the state, not by the operators describing observables.
 
  • Like
Likes   Reactions: Konte
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
 
Last edited:
  • Like
Likes   Reactions: Konte, gentzen, mattt and 1 other person
HomogenousCow said:
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
I have a little question that answer can surely help me to understand more: how do we express the interaction term (in the Schrödinger equation) with electrostatic field in the "Stark effect" case when we treat the field as quantized field ? In semi-quantum case, it is only expressed as the product of dipolar moment with classical electrostatic field : ##\mu . E##
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 78 ·
3
Replies
78
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K