I Quantization of the electromagnetic field

Click For Summary
The discussion focuses on the quantization of the electromagnetic field, particularly how static electric and magnetic fields can be expressed in a quantized framework. It highlights the use of annihilation and creation operators to describe these fields and references the Klein-Gordon Hamiltonian for a spatially-dependent source. The conversation also touches on the transformation of the Hamiltonian to simplify the expression of the fields, allowing for the application of creation-annihilation operators as if the field were free. Additionally, there is a question regarding the representation of interaction terms in the Schrödinger equation for the Stark effect when treating the field as quantized. Understanding these concepts is essential for grasping the quantization of static electromagnetic fields.
Konte
Messages
90
Reaction score
1
TL;DR
quantization, electromagnetic field
Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
 
Physics news on Phys.org
Konte said:
Summary:: quantization, electromagnetic field

Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
In quantum theory a "situation" is described by the state, not by the operators describing observables.
 
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
 
Last edited:
  • Like
Likes Konte, gentzen, mattt and 1 other person
HomogenousCow said:
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
I have a little question that answer can surely help me to understand more: how do we express the interaction term (in the Schrodinger equation) with electrostatic field in the "Stark effect" case when we treat the field as quantized field ? In semi-quantum case, it is only expressed as the product of dipolar moment with classical electrostatic field : ##\mu . E##
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 78 ·
3
Replies
78
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K