Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Quantum level working of IR sensor

  1. Aug 1, 2010 #1
    Quantum level working of IR sensor....

    There are datasheets of IR sensors like the TSOP1738 that conveniently tell me that when I make an IR LED flash at 38Khz, a current is produced. However, i would like to know what happens on an atomic level.
    Is it just a matter of electron promotion because of the infrared light ? Then how does the sensor only allow IR to cause excitation of the electrons ?
    Is it the material they use for these sensors that reacts only to the IR light ?
    How exactly does infrared light cause electrons to flow in this sensor ?

    I would be very grateful of anyone could either answer my question or point me to links where this is nicely explained. I need to know what is behind these sensors as I am researching IR communication and wish to know more about the sensing mechanism.

    Thank you.
     
  2. jcsd
  3. Aug 2, 2010 #2

    Lok

    User Avatar

    Re: Quantum level working of IR sensor....

    Normal CCD's (hope the term is not outdated) are IR sensitive so they see it, we don't. My cell phone camera can see IR as I point it to IR cameras that also emit. I dont see the IR leds but my cell shows a bright green-ish light. Photo cameras don't see IR as they have an IR filter to produce quality pictures without weird lights you don't normally see.

    In order to get only IR sensitivity you just put a filter that blocks the rest.
     
  4. Aug 2, 2010 #3
    Re: Quantum level working of IR sensor....

    Thank you Lok for taking the time to answer my question...
    Alright, assuming you need just a filter, does that imply that the IR sensor is just a photo-diode of some sort ?
    It is physical barriers that account for it being able to sense IR only and not the inherent property of the material?

    On that note, can anyone explain, again on a quantum level, how photon-detectors work then?
    I have seen equations, but do not understand why electrons are caused to flow when EM waves of a constant power are applied on to it.
    Is this property based on the work function of the material being used?
    Are semi-conductors preferred for photo-detection and why ?

    Thank you,
    I look forward to a response.

    EDIT: after a little poking around, i noticed that the 'Photo-electric effect' seems to be valid for EM radiation of "very short wavelength, such as visible or ultraviolet light."--Wikipedia:Photoelectric effect
    How then does IR fit into the picture ? It seems that this is not a simple case of the photo-electric effect.
    Thanks
     
  5. Aug 2, 2010 #4

    Lok

    User Avatar

    Re: Quantum level working of IR sensor....

    http://en.wikipedia.org/wiki/Charge-coupled_device

    "Most common types of CCDs are sensitive to near-infrared light, which allows infrared photography, night-vision devices, and zero lux (or near zero lux) video-recording/photography. For normal silicon-based detectors, the sensitivity is limited to 1.1 μm. One other consequence of their sensitivity to infrared is that infrared from remote controls often appears on CCD-based digital cameras or camcorders if they do not have infrared blockers."

    Not to go too much into the details about the many types of detectors. The idea is that the photoelectric effect is material and band-gap dependent. For shortwave light atomic absorbtion and PE effect are used ( short IR and above) and for longer wavelengths a simple radio antenna of specific size might do (microwaves or lower). The bigger the wavelength the bigger the detector (or detector cell) for electronic sensing.
     
  6. Aug 2, 2010 #5

    Lok

    User Avatar

    Re: Quantum level working of IR sensor....

    Electrons ca be stripped from an atom by "hitting" with an photon of it's escape energy or more. In some molecular or metalic structures the "escape energy" (not a real escape) is not neccesarily the strippind away of the electron but rather just moving it to a higher energy state in the structure without kicking it out of it, that can result in a small electric current (or potential).
     
  7. Aug 4, 2010 #6
    Re: Quantum level working of IR sensor....

    Hello,
    CCDs seem to be rather old technology... Can anyone here make out what type of tech is used in devices like the http://www.datasheetcatalog.org/datasheets/208/301092_DS.pdf"

    Not the 38khz part, just the sensing part. (the frequency dependence is externally created by some other circuit elements and not by the sensor material itself right ?)

    Thank you.
     
    Last edited by a moderator: Apr 25, 2017
  8. Aug 6, 2010 #7
    Re: Quantum level working of IR sensor....

    Would anyone else like to contribute? I have a lot more questions to ask !
    Does anyone here have an opinion on the matter ?
     
  9. Aug 13, 2010 #8
    Re: Quantum level working of IR sensor....

    I am brave...my fear of being wrong, is gone, I just also
    have gaps here, so be kind.

    1) the 38 kHz requirement IS performed by electronic circuits
    that measure the IR sensor voltage. This is a way to "filter"
    out all IR signals that are NOT flashed at a 38 kHz rate...the
    rate that the remote sends IR pulses.

    2) Now to the sensor...A "photon" is "absorbed" into the
    "electron cloud" of an "atom" and/or "molecule" of the
    IR sensor...or is not. If "absorbed", an "electron cloud"
    "expands" to a higher "energy" and either "kicks" an
    "electron" to a wire(s) mounted in the sensor, and/or emits
    other "photons", to get the "atom" and/or "molecule" to "shrink"
    back to its "preferred" (or "rest") state of "energy". An IR detector
    would prefer "kicking" whereas, a "photon" source (eg, LASER)
    would prefer the "re-radiating" effect. My quoted concepts are
    surely incomplete, so take it with a bit of salt.
     
  10. Aug 14, 2010 #9
    Re: Quantum level working of IR sensor....

    Honestly, any opinion is a good opinion ..... Thanks
    From what you said, I assume that an IR sensor is any regular EM sensor with the appropriate IR filters put into place....
    Am i correct to assume that ?

    If so, then my quest for knowledge ends here...
     
  11. Aug 14, 2010 #10
    Re: Quantum level working of IR sensor....

    IR sensors that I am aware of, are semiconductors, ie, diodes (PN),
    transistors (PNP or NPN), or PIN diodes...(check wiki).

    I assume that the silicon impurities(doping) has alot to do with
    the wavelength sensed as well as light filters. "regular" seems
    like "one rule fits all" logic???...the devil is in the details.
     
  12. Aug 14, 2010 #11
    Re: Quantum level working of IR sensor....

    The spec sheet does say it's a PIN diode. Are you asking what specific material they use?
     
  13. Aug 15, 2010 #12
    Re: Quantum level working of IR sensor....

    Is there some sort of equation relating %doping with whatever material in silicon to wavelength sensed ?
    Or forget the equation, can you explain physically why doping (which i know increases/decreases conductor/semi-conductor behavior) could result in different wavelengths being sensed ?
    The "I assume" part sort of scares me...But i did some of my own research and it does seem to make sense...

    I looked around and everywhere there are lists of materials that can be used for IR detection... It would be very(very) helpful if you could find out specifically what material the http://www.datasheetcatalog.org/datasheets/208/301092_DS.pdf" sensor uses..

    Any inputs will be valued greatly....
    Thanks to Lok, ClamShell and Dr Lots-o'watts for their help so far.
     
    Last edited by a moderator: Apr 25, 2017
  14. Aug 19, 2010 #13
    Re: Quantum level working of IR sensor....

    I am rather convinced that doping is responsible for peak wavelength sensing.
    That is a specific ratio of doping results in EM waves of a specific wavelength causing maximum photon emission.
    Am i correct in that belief ?

    Also, if anyone could provide a reason for why this happens ? In terms of physical concepts like electron promotion and work function and other concepts, and not only by mathematical equations....

    Thank you !!
     
  15. Aug 19, 2010 #14
    Re: Quantum level working of IR sensor....

    In PIN diodes, the wavelengths that are absorbed are the ones which correspond to the energy differences between pairs of energy levels. The structure of the energy levels is determined when the materials are processed. This may include doping.
     
  16. Aug 19, 2010 #15
    Re: Quantum level working of IR sensor....

    Ah, Great, that was simple enough..
    So there is no definite wavelength the material can eject electrons for, it is just that when the wavelength energy matches the energy level difference, it emits more electrons than when it doesn't match ?(or something like that)

    Would the graph between wavelength of light to current produced be something like this ?
    [PLAIN]http://img194.imageshack.us/img194/8545/91107135.png [Broken]

    The reason i needed all this information is because i'm doing a project on infrared communication and i wanted to know the physics behind it and not just the engineering jargon. Is there any other information i should know about ?

    Thank you
     
    Last edited by a moderator: May 4, 2017
  17. Aug 19, 2010 #16
    Re: Quantum level working of IR sensor....

    There is always a width to the allowable wavelengths, because :

    1. It isn't necessarily useful to have a narrow width.
    2. It isn't necessarily possible to manufacture an arbitrarily narrow width (defects are inherent).
    3. Materials have a temperature T>0, so its atoms have movement, making the energy gap non-constant.
    4. Ultimately, Heisenberg's principle prevents a single wavelength (perfectly defined energy) from happening. A true single wavelength belongs to an infinitely long monochromatic wave, an idealistic mathematical representation, which does not exist.

    That shape you drawn is an idealistic possibility. In the "technical sheet" from the following link, you will find 3 photodiodes of different designs, each optimized for a certain range. They each have a "peak sensitivity", to which corresponds the maximum current. In the "user manual", you can find the wavelength where that peak sensitivity occurs.

    http://www.gentec-eo.com/en/products/photo-detectors.52.htm [Broken]
     
    Last edited by a moderator: May 4, 2017
  18. Aug 22, 2010 #17
    Re: Quantum level working of IR sensor....

    That's exactly what i was looking for ! Thanks !
    There are a few things I don't quite understand:

    1.
    How exactly do they calibrate it ? I thought a sensor once made to sense a particular wavelength, always senses that wavelength... How can one change this range in such small steps(1 nm)?
    Some sort of a physical mechanism or electrical(dealing with changing energy levels of atoms somehow??)

    2.
    What are attenuators in this context ? (I'm guessing they are some sort of filters, but thats just a guess) How exactly do they work (if they are filters or wavelength sensor adjusting devices)

    Please do reply fast. Thank you.
     
  19. Aug 22, 2010 #18
    Re: Quantum level working of IR sensor....

    As I said, there is an inherent range. And for these instruments in particular, it is a plus, because it allows the user to measure a variety of different lasers with the same detector. The width of the range is put to use.

    Think sunglasses. They absorb some of the light, so that only 10% (or 1%) reach the sensing element. This prevents saturation (max current), above which there is obviously no measurement.
     
  20. Aug 25, 2010 #19
    Re: Quantum level working of IR sensor....

    Hi,
    This 'inherent range' you talk about.... if i understand the tech sheet correctly, it says the same sensor can be used to sense wavelengths at steps of 1 nm (within its inherent range)...

    By this, assuming light intensity is same for all wavelengths i use, do they mean:
    a) Judging by the voltage generated, one can estimate the wavelength (therefore, one must refer to standard values which have been found experimentally)

    OR

    b) by calibrating something, one can pick a wavelength and get maximum voltage in all cases within its range...

    if it's a), then i understand..
    if it's b), then what is this something that is calibrated ?
    and if its something else, then i'd be grateful if you could tell me....

    Thank you.
     
  21. Aug 25, 2010 #20
    Re: Quantum level working of IR sensor....

    To use the unit, you enter what wavelength you want to measure (799 nm, or 800 nm, or 801 nm, or 802 nm etc.). Then you point the laser towards it, and it tells you how many watts in the beam.

    ...?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Quantum level working of IR sensor
Loading...