Quantum Mechanics - Matrix representations

Click For Summary
SUMMARY

This discussion focuses on the calculation of angular momentum operators Jx and Jy in quantum mechanics, specifically using the ladder operators J+ and J-. The user initially attempted to express Jx and Jy in terms of J+ and J-, but faced challenges with unclear results. The community suggests calculating the action of J+ and J- on the states |j,m> to derive the matrix elements, emphasizing the importance of correctly identifying non-zero entries in the resulting matrices.

PREREQUISITES
  • Understanding of quantum mechanics, specifically angular momentum theory
  • Familiarity with ladder operators in quantum mechanics
  • Knowledge of matrix representations of operators
  • Ability to work with Dirac notation and bra-ket formalism
NEXT STEPS
  • Learn how to derive matrix elements using the expression ⟨j',m' | J_x | j, m⟩
  • Study the properties and applications of ladder operators J+ and J- in quantum mechanics
  • Explore examples of angular momentum matrices in quantum mechanics textbooks
  • Practice calculating the action of J+ and J- on various |j,m> states
USEFUL FOR

Students and professionals in physics, particularly those studying quantum mechanics and angular momentum, as well as educators seeking to clarify the use of matrix representations in this context.

Graham87
Messages
72
Reaction score
16
Homework Statement
See pic
Relevant Equations
See pic
1FBB25AF-72CA-4AFE-8E80-1634FE430ABA.jpeg

I have found J^2 and Jz, but I am not sure how to find Jx and Jy.
I’m thinking maybe use J+-=Jx+-iJy ? But I get unclear results.

07FECEF0-D48C-4642-B066-D8B1A231D831.jpeg


Thanks!
 
Physics news on Phys.org
Graham87 said:
Homework Statement:: See pic
Relevant Equations:: See pic

View attachment 313615
I have found J^2 and Jz, but I am not sure how to find Jx and Jy.
I’m thinking maybe use J+-=Jx+-iJy ? But I get unclear results.

View attachment 313617

Thanks!
Using ##J_{\pm}## sounds like a good idea. Show us what you get.
 
  • Like
Likes Graham87
Graham87 said:
I’m thinking maybe use J+-=Jx+-iJy ? But I get unclear results.
You have to do it the other way around: Express ##J_x## and ##J_y## in terms of ##J_+## and ##J_-##.
 
  • Like
Likes Graham87
68534854-CFAB-47FA-91C5-B3670758D0A8.jpeg

I got this, but it gets messy when I try to find J+- with this expression:
00BEB4E3-F3C6-4034-979E-40D7D12B4490.jpeg

I don’t know how to form the matrix, what goes where.
 
Matrix elements are found using ##\braket{j',m' | J_x | j, m}##, so you can start by calculating ##J_+ \ket{j,m}## and ##J_- \ket{j,m}## explicitly for the 4 ##\ket{j,m}## states you need to consider here.
 
  • Like
Likes Graham87
Something like this?

D8B422B4-599F-4EFE-BF29-43F27E1374BF.jpeg

05C651B6-5D22-4A12-AD53-07208E8C2354.jpeg
 
  • Like
Likes PeroK
Good effort, but I don't agree with some of the entries in the ##J_{\pm}## matrices.
 
  • Like
Likes Graham87
Here's a tip. A lot of physics textbooks write one formula with various ##\pm## and ##\mp##. I find it easier to keep the formulas separate with either ##+## or ##-##.
 
  • Like
Likes Graham87
Graham87 said:
Where in the matrix did you not agree ?
The non-zero entries!
 
  • Like
Likes Graham87
  • #10
PeroK said:
The non-zero entries!
Thanks! Just noticed my error.
cheers!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
6K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K