Quantum Tunneling to an infinite wall

AI Thread Summary
The discussion revolves around the behavior of a wavefunction when encountering an infinite potential wall in quantum mechanics. The original poster seeks clarification on whether the wavefunction goes to zero or reflects at the wall, particularly in the context of their equations for three regions. Participants emphasize the importance of boundary conditions and continuity of the wavefunction across regions, suggesting that the relationship between constants C and D must satisfy these conditions. Ultimately, the poster resolves their confusion with assistance from others in the thread. The conversation highlights the complexities of quantum tunneling and wavefunction behavior at potential barriers.
maguss182
Messages
16
Reaction score
0
Homework Statement
Need to find what the boundary condition is for an Energy hitting an infinity wall of potential
Relevant Equations
Ce^ikx+De-ikx - Wavefunction for 3rd region I need to apply boundary conditions to.
I have the equations for all three regions but usually for region 3, which is Ce^ikx+De-ikx, the C term would be zero since there is no reflection, but with the infinite wall would it reflect? Would the whole wavefunction go to zero like when working with the infinite square wall? I'm stuck on this part, any help would be greatly appreciated

I edited this screenshot I took from a youtube video, to make it clearer what I'm referring too

Screenshot 2022-04-29 201307.png
 
Physics news on Phys.org
Hello,

You want to read your post and clarify a lot of things. I don't see a region 3: do I have to guess ? If so, C is a good candidate. But then another C than the one in ##C e^{ikx} + D e^{-ikx}##, I suppose.

What about ##x<0##? Another solid wall with ##V=\infty## where the y (E?) axis is drawn? So we have a particle in a box with a barrier? Or a region extending to ##-\infty## meaning we have particles coming from the left to find a barrier and after that our wall ?
maguss182 said:
I have the equations
Why not share them ? And your solutions as well --- if only to provide some clarity !##\ ##
 
Sorry I'll try to clarify a bit more, you have a particle coming in from the left, it hits a barrier of potential v0, then it continues and hits an infinite wall at some point x, my question is what happens to the wave function at that point x when it hits the infinite wall, does it go to zero like in an infinite square well, or does it have a reflection? I marked the regions, and the red line is the infinite wall that the particle heads towards.

My equations are for
Region 1= Aeikx+Be-ikx
Region 2 = Fek0x + Ge-k0x
Region 3 = Ceikx+De-ik0x

If the infinite wall (red on the picture) wasn't there, then C would be zero since there is no reflection, but you still have D, however with the infinite wall there, does it all go to zero? Or is there a reflection C?

I hope that's a little more clear, thank you!
 

Attachments

  • Screenshot 2022-04-30 103913.png
    Screenshot 2022-04-30 103913.png
    6.5 KB · Views: 125
First, keep in mind that the wave function should be defined for all ##x##. In particular, what's the value of ##\psi## in the region where the potential is infinite?

Second, the wave function needs to be continuous. What does that tell you about how ##\psi## behaves as you approach the wall from the left in region 3? What does that imply about how ##C## and ##D## are related?
 
Last edited:
So in my example, x=o when ##\psi## which would make e^0=1 so my region 3 equation becomes C+D=0 or C=D?
 
maguss182 said:
does it go to zero like in an infinite square well, or does it have a reflection?
This statement does not make sense.
The wavefunction you are trying to write down is an eigenstate that exists for all time. The various pieces of it represent incoming and outgoing waves at infinity. The boundary condition that the amplitude must vanish at the "wall" will require that the left and right fluxes match. The presence of that region will allow for "resonant" states to exist. There are boundary conditions at each of the three boundaries sufficient to solve for all of the constants.
maguss182 said:
So in my example, x=o when ψ which would make e^0=1 so my region 3 equation becomes C+D=0 or C=D?

If the wall is at position x=b then that will generate contions on C and D that will involve ##\Psi (b)##
I am not sure I understand which region is which from your pictures
 
maguss182 said:
So in my example, x=o when ##\psi## which would make e^0=1 so my region 3 equation becomes C+D=0 or C=D?
This doesn't make sense. The wall isn't at ##x=0##. Why would you set ##x## to 0?
 
I managed to figure it out, thank you for the help though!
 
maguss182 said:
I managed to figure it out, thank you for the help though!
Was the result interesting?
 
Back
Top