I Quasi-Static Change of Event Horizon Area

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Let ##\mathscr{H}## be a constant-##v## cross-section of the event horizon (area ##A##). The expansion is the fractional rate of change of the surface element, ##\theta = \frac{1}{\delta S} \frac{d(\delta S)}{dv}##. The problem asks to prove the formula ##\frac{dA}{dv} = \frac{8\pi}{\kappa} \oint_{\mathscr{H}} (\frac{1}{8\pi} \sigma^2 + T_{ab} \xi^a \xi^b) dS## where ##\xi## is the tangent to the null generators.

I used the Raychaudhuri equation to write down\begin{align*}
\oint_{\mathscr{H}} \left( \frac{1}{8\pi} \sigma^2 + T_{ab} \xi^a \xi^b \right) dS &= \frac{1}{8\pi} \oint_{\mathscr{H}} \left(\kappa \theta - \frac{1}{2} \theta^2 - \frac{d\theta}{dv} \right) dS \\ \\
&= \underbrace{\frac{\kappa}{8\pi} \frac{d}{dv} \oint_{\mathscr{H}} dS}_{= \frac{\kappa}{8\pi} \frac{dA}{dv} } - \frac{1}{8\pi} \oint_{\mathscr{H}} \left( \frac{1}{2} \theta^2 + \frac{d\theta}{dv} \right) dS
\end{align*}I suppose the quasi-static approximation is supposed to kill the other term but I'd like to justify it properly?
 
Physics news on Phys.org
As I suggested in another one of your questions, you should really provide a reference.
Your homework question is
not self-contained.

For the possibly interested reader, what is \kappa, \sigma,…,etc?

If the question was only intended for those already familiar with the situation, then this should be classified as A-level, not I-level.
 
  • Like
Likes ergospherical
Sorry, the question is the last one in the Black Hole section of E. Poisson's relativist's toolkit. ##\kappa## is the surface gravity, ##\sigma^2 = \sigma^{ab}\sigma_{ab}## the square of the shear, ##v## the parameter along the null generators and ##dS = \sqrt{^2g} d^2 \theta## the surface element on ##\mathscr{H}## with ##(^2g)_{ab} = \frac{\partial x^{c}}{\partial \theta^a} \frac{\partial x^d}{\partial \theta^b} g_{cd}## the pull-back of ##g## onto ##\mathscr{H}##.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Back
Top