Question about a measured spectra

  • Context: Graduate 
  • Thread starter Thread starter BillKet
  • Start date Start date
  • Tags Tags
    Spectra
Click For Summary

Discussion Overview

The discussion revolves around the analysis of a measured spectra showing transitions from a ##^{2}\Sigma_+## electronic level to an excited ##\Omega=3/2## level. Participants explore the fitting of spectral data using molecular constants and the challenges faced in simulating the spectra accurately, considering factors such as temperature, vibrational and rotational states, and Franck Condon factors.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant describes the measured spectra and the need to fit it to a specific formula involving vibrational and rotational constants, expressing difficulty in achieving a close match with simulated data.
  • Another participant questions the temperature of the molecules and suggests adding more rotational states to the initial distribution to better account for the observed peaks.
  • There is confusion about whether the observed peaks correspond to vibrational transitions or if they are influenced by rotational states, with one participant noting the width of each peak suggests multiple rotational peaks may be present.
  • Participants discuss the possibility of a Franck Condon factor of 0 for the ##\Delta \nu = 0## line, which seems unlikely, and consider the implications of this on the observed spectra.
  • One participant mentions the need for additional terms in the Hamiltonian, although they express uncertainty about their significance.
  • Another participant inquires about the ground state vibrational constant, which is provided as approximately 400 cm##^{-1}##.
  • One participant expresses being stumped by the lack of a central peak for diagonal lines in the vibrational spectrum, suggesting the involvement of another quantum number may be necessary to explain the observations.

Areas of Agreement / Disagreement

Participants express various hypotheses and uncertainties regarding the fitting of the spectra and the roles of vibrational and rotational states. There is no consensus on the underlying reasons for the observed spectral features, and multiple competing views remain regarding the interpretation of the data.

Contextual Notes

Participants note limitations in the current understanding of the spectra, including potential missing assumptions about the quantum states involved and the effects of temperature on the observed transitions.

BillKet
Messages
311
Reaction score
30
Hello! I have the spectra below measured, which shows transitions from a ##^{2}\Sigma_+## electronic level (the ground state) to an excited ##\Omega=3/2## level (there are several other level around it, so I decided that using Hund case c would be better, than Hund case a, but in Hund case a this state would be mainly ##^{2}\Pi_{3/2}##). I know the molecular constants of the ##^{2}\Sigma_+## state and I would like to get some values for the excited state. The resolution is not great, so I don't expect really accurate values, but ideally I would like to fit something of the form: $$T_{3/2}+B_{3/2}J(J+1)+D_{3/2}[J(J+1)]^2$$
The molecules are quite hot, so we have several vibrational levels populated (at least the first 4-5 based on some preliminary experiments). However, I am not really able to bring the simulated spectra (I am using pgopher) close to this measured one, such that I can start the fit from a region close to the truth one. I can get a pair of left/right peaks (on the left and right of that central empty zone) for the right parameters for a given vibrational transition, but I get only 1 pair of peaks. However my spectra seems to have a lot of those (almost like the spectra is mirrored around that empty region) and adding more vibrational levels doesn't really help much. New vibrational levels are shifted to the left or to the right with respect to each other, but what I would need is something that stays at the center, in the empty region, but moves the left and right peaks further away from each other. I was not able to get this effect. Has anyone seen a spectra like this before? Can someone give me any advice on how to proceed? Thank you!
 

Attachments

  • plot_3_2.png
    plot_3_2.png
    10.2 KB · Views: 201
  • Like
Likes   Reactions: Twigg
Physics news on Phys.org
How hot were the molecules? Temperature or Doppler linewidth is fine.

As you mentioned, adding more vibrational states doesn't add mirrored peaks like you see. Have you tried adding more rotational states to the initial distribution beyond the 4-5 you originally saw? That's what would make the most sense to me.

BillKet said:
However, I am not really able to bring the simulated spectra (I am using pgopher) close to this measured one, such that I can start the fit from a region close to the truth one. I can get a pair of left/right peaks (on the left and right of that central empty zone) for the right parameters for a given vibrational transition, but I get only 1 pair of peaks.
You did try sweeping the value of ##B_{3/2}##, right? And you still only see one peak? Even though you have 4-5 rotational levels populated initially? That doesn't make a whole lot of sense.
 
Twigg said:
How hot were the molecules? Temperature or Doppler linewidth is fine.

As you mentioned, adding more vibrational states doesn't add mirrored peaks like you see. Have you tried adding more rotational states to the initial distribution beyond the 4-5 you originally saw? That's what would make the most sense to me.You did try sweeping the value of ##B_{3/2}##, right? And you still only see one peak? Even though you have 4-5 rotational levels populated initially? That doesn't make a whole lot of sense.
Thank you for your reply! By more rotational states, you mean rotational states that are populated in the ground state? Currently I didn't set a cut on that. The temperature in pgopher is set to 500K and I have all the J values between 0 and 100.

Do you mean that each of the peaks we see there is actually a rotational peak? This is what confuses me. The width of each peak is a few tens of GHz, so each peak in the plot has a few tens of rotational peaks under it. So I assumed that each pair of left-right peak is actually one vibrational transition (including all the transition from multiple rotational levels). But again, that accounts for only one pair of peaks. Changing the rotational constants makes one such pair change its shape a bit, but doesn't add new peaks.
 
BillKet said:
This is what confuses me. The width of each peak is a few tens of GHz, so each peak in the plot has a few tens of rotational peaks under it.
Right, sorry, dumb oversight on my part. I think I just got confused because you presented a formula for rotational spectra as what you wanted to fit to.

Yeah ok I see what you mean now. Weirdly, your spectrum would make sense if you somehow magically had a Franck Condon factor of 0 for the ##\Delta \nu = 0## line, but that seems unlikely to me. I'm biased though because I've only ever worked on molecules with low vibrational branching ratios (i.e., molecules that lend themselves to quantum state control, and thus have highly diagonal FCFs).
 
Twigg said:
Right, sorry, dumb oversight on my part. I think I just got confused because you presented a formula for rotational spectra as what you wanted to fit to.

Yeah ok I see what you mean now. Weirdly, your spectrum would make sense if you somehow magically had a Franck Condon factor of 0 for the ##\Delta \nu = 0## line, but that seems unlikely to me. I'm biased though because I've only ever worked on molecules with low vibrational branching ratios (i.e., molecules that lend themselves to quantum state control, and thus have highly diagonal FCFs).
I see what you mean. But from the theoretical predictions this should be highly diagonal. There will be some off-diagonal terms, but highly suppressed (not sure if we would see them at all).

Could it be that I need other terms in the Hamiltonian (although I don't they will be big enough to change anything)?
 
What's your ground state vibrational constant (harmonic frequency)?
 
Twigg said:
What's your ground state vibrational constant (harmonic frequency)?
It is about 400 cm##^{-1}##.
 
Yep, sorry, I'm stumped. I can't see how your vibrational spectrum would look like that (no central peak for the diagonal lines) unless you had another quantum number involved (splitting into two peaks for the diagonal lines). I didn't think an omega doublet or lambda doublet could be as big as 10's of cm-1 though. I'm going to shut up until the real spectroscopy gurus get around to this. o:)
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
664
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 156 ·
6
Replies
156
Views
11K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K