Question about CH (continuum hypothesis)

In summary, the conversation discusses the computation of ##\phi(\aleph_0)##, where ##\phi## is an undefined function. It is noted that in ZFC, there is no cardinality between ##\aleph_0## and ##2^{\aleph_0}##, and the continuum hypothesis states that ##\aleph_1=2^{\aleph_0}##. However, in ZF, things are more complicated as there may be a cardinality between ##\aleph_0## and ##2^{\aleph_0}##. It is also pointed out that the notation ##2^x## is used to represent the set of all functions from ##x## to
  • #1
jk22
729
24
Is it possible to calculate this :

Suppose the iterative root of ##2^x## :

##\phi(\phi(x))=2^x## (I suppose the Kneser calculation should work, it affirms that there is a real analytic solution)

Then how to compute ##\phi(\aleph_0)## ? (We know that ##2^{\aleph_0}=\aleph_1##).

Could this be ##\aleph_{1/2}## ?
 
Physics news on Phys.org
  • #2
I don't know what your wrote, but (assuming standard set-theory) things change a lot depend on whether one assumes AC or not.

For example, under ZFC there would be no such thing as ##\aleph_{1/2}##. There would only be ##\aleph_{\alpha}## (where ##\alpha \in Ord##). ##\aleph_{\alpha}## basically means (as I understand in layman terms) that:
When you say a set ##A## has cardinality ##\aleph_{\alpha}##, then when you well-order it there exists no well-ordering of ##A## which has length (order-type) less than ##\omega_{\alpha}## (the ##\alpha##-th uncountable).

Of course, there is also no well-ordering of ##A## which has length greater than ##\omega_{\alpha+1}## (if that were true the cardinality of ##A## would no longer remain ##\aleph_{\alpha}##).

What I said before is something you would find in most elementary books (I myself only studied half-way through an elementary book many years ago and haven't been able to return to study further).

=========

Under ZF things are substantially more complicated though (because well-order for a set can't be guaranteed), even more so than under ZFC (as if it wasn't enough!). I don't have any idea about that. Though you might try searching for something like "cardinalities without choice" to get a rough feel for things.
 
  • #3
You are asking about a function ##\phi## which applies to numbers, but is not defined. Your question is whether it is meaningful with cardinal number as an argument. With no further explanation, it is very hard to answer.
 
  • Like
Likes WWGD
  • #4
If the continuum hypothesis is true, then there is no cardinal between ##\aleph_0## and ##2^{\aleph_0}##. So there would be no way to go "halfway" from one to the other.
 
  • #5
I think your point of comparison between ##\aleph_0## and ##\aleph_1## is correct. We could probably(?) safely say (in case of CH being true) that there is no cardinality ##N## such that:
##\aleph_0 < N < \aleph_1##

However, in an a priori sense, without assuming a guaranteed well-order for sets, it seems there should be no guarantee that the situation "after this" wouldn't be much more complicated. No?P.S. [On that note I am not fully sure what the appropriate ordering for cardinals should be in ZF, but that's also probably quite elementary.
For example, in ZFC the cardinals are be well-ordered (so that seems to be the right way to view them in that context). So whenever we write something like "card(A)<card(B)" we know that the "comparison relation" is the one based upon well-order]
 
  • #6
By definition ##\aleph_1## is the second cardinal number. The contuum hypotheses states ##\aleph_1=2^{\aleph_0}##.
 
  • #7
Yes, I understand that:
There is no cardinality ##N## such that ##N>\aleph_0## and ##N<2^{\aleph_0}## (CH)
##\aleph_0<2^{\aleph_0}## (Cantor theorem)
##card(\omega)={\aleph_0}##
##card(\omega_1)={\aleph_1}##

I was just pointing out that things are complicated in ZF and there are number of peculiarities associated with it (that one should be wary of at least). For example, if I am not mistaken, it is possible in ZF for ##\omega_1## to have countable co-finality. There seem to be a number of things that aren't intuitively obvious. [EDIT:] To back-up my point a bit more, here is a thread I found from a very simple search (https://math.stackexchange.com/questions/404807). Honestly though, it is a bit too difficult/head-spinning for me, but it does illustrate my point. [END]

Personally though, somewhat honestly, learning in detail about the kind of things I wrote in above paragraph might be significantly lower in my list compared to number of other things. A partial reason is simply that even trying to learn (imperfectly) the kind of world(s) ZFC describes is extremely arduous (at least for me) as it is.

P.S.
Just to clarify a bit it wasn't fully clear to me what the context of post#4 was. If ZFC is assumed then it is obviously trivial that CH implies ##\aleph_1=2^{\aleph_0}##.
That's because if we assumed ##\aleph_\alpha=2^{\aleph_0}## (where ##\alpha>1##), we could find a cardinality in-between ##\aleph_0## and ##\aleph_\alpha## (for example: ##\aleph_1##) contradicting the assumption of CH.
 
Last edited:
  • #8
jk22 said:
Is it possible to calculate this :

Suppose the iterative root of ##2^x## :

##\phi(\phi(x))=2^x## (I suppose the Kneser calculation should work, it affirms that there is a real analytic solution)

Then how to compute ##\phi(\aleph_0)## ? (We know that ##2^{\aleph_0}=\aleph_1##).

Could this be ##\aleph_{1/2}## ?
There is a lot of notational abuse in this post. The notation ##X^Y## is generally used in set theory as a shorthand for "the set of all functions from ##Y## to ##X##." For the specialized case of ##2^S##, identifying 2 with the Boolean set ##\{0,1\}##, we see that it's a shorthand for "the set of all functions from ##S## to ##\{0,1\}##." It is straightforward to show that there is a bijection between this set and the power set of ##S##. Thus, the suggestive notation ##2^S##, which obeys the law of cardinal exponentiation: ##|2^S| = |2|^{|S|}##.

But the iterative root in your post clearly corresponds to a function defined thus: ##\phi: S\rightarrow S##, for some ##S##, be it natural numbers, reals, etc. Now, functions, themselves being defined as sets (namely, given a function ##f:X\rightarrow Y##, ##f## is a set of ordered pairs ##(x,y), x\in X, y\in Y## where each ##x\in X## appears exactly once) do have a cardinality of their own, but that cardinality is equal to the cardinality of the set ##X##. So ##\phi##, viewed as a set, would have a cardinality equal to whatever set it is operating on; i.e., its domain.
 
  • #9
SSequence said:
P.S.
Just to clarify a bit it wasn't fully clear to me what the context of post#4 was. If ZFC is assumed then it is obviously trivial that CH implies ##\aleph_1=2^{\aleph_0}##.
That's because if we assumed ##\aleph_\alpha=2^{\aleph_0}## (where ##\alpha>1##), we could find a cardinality in-between ##\aleph_0## and ##\aleph_\alpha## (for example: ##\aleph_1##) contradicting the assumption of CH.
Statement is confusing. CH statement IS ##\aleph_1=2^{\aleph_0}##, not implies that..
 
  • #10
mathman said:
You are asking about a function ϕϕ\phi which applies to numbers, but is not defined.
Just a small point: the function ##\phi## in the OP is defined. It's the function whose composition with itself yields ##2^x##:
$$\begin{align}
\phi \circ \phi : \text{ } \mathbb{R} &\to \mathbb{R} \nonumber \\
x &\mapsto 2^x \nonumber
\end{align}$$
It's sometimes called the "functional square root:"
https://en.wikipedia.org/wiki/Functional_square_root
Whether the function is unique or not is above my pay grade :smile:
 
  • #11
mathman said:
Statement is confusing. CH statement IS ##\aleph_1=2^{\aleph_0}##, not implies that..
Yeah the implication is in both directions.
 
  • #12
So maybe it is that there are ##\aleph##s that are not cardinalities ?
 
  • #13
Here is a summary (of the basic scenario) in two or three sentences:
---- In ZFC all cardinalities are of the form ##\aleph_{\alpha}## (where ##\alpha \in Ord##). Here ##\aleph_{\alpha}## is cardinality of ordinal denoted as ##\omega_{\alpha}##.

---- In ZF one definitely can't assume that all cardinalities are of the form ##\aleph_{\alpha}## (where ##\alpha \in Ord##). I think (with high certainty) that, on the very least, it would be consistent that there are no cardinalities of the form as described in previous sentence. One could probably say something stronger than that (but I don't know much, as I mentioned previously).
 

What is the continuum hypothesis?

The continuum hypothesis (CH) is a mathematical statement proposed by Georg Cantor in 1878. It states that there is no set whose cardinality is strictly between that of the integers and the real numbers.

Is the continuum hypothesis true or false?

The truth or falsity of the continuum hypothesis is still an open question in mathematics. It was shown to be independent of the axioms of set theory by Kurt Gödel in 1940, meaning that it cannot be proven or disproven using the standard axioms of mathematics.

Why is the continuum hypothesis important?

The continuum hypothesis has significant implications for the foundations of mathematics and has been a topic of much discussion and debate among mathematicians. Its resolution would greatly impact our understanding of the structure of the real numbers and the nature of infinity.

What are some attempts to solve the continuum hypothesis?

Many mathematicians have attempted to prove or disprove the continuum hypothesis over the years. Some notable attempts include Paul Cohen's forcing method and Hugh Woodin's Ultimate L conjecture. However, as of now, the continuum hypothesis remains unsolved.

What is the current status of the continuum hypothesis?

The continuum hypothesis is still an open problem in mathematics. While it has been shown to be independent of the standard axioms of set theory, some mathematicians continue to search for a proof or disproof using alternative axioms or methods. The resolution of the continuum hypothesis remains one of the most important and challenging problems in mathematics.

Similar threads

  • Set Theory, Logic, Probability, Statistics
Replies
3
Views
1K
  • Set Theory, Logic, Probability, Statistics
Replies
27
Views
3K
  • Set Theory, Logic, Probability, Statistics
Replies
15
Views
1K
Replies
1
Views
922
  • Set Theory, Logic, Probability, Statistics
Replies
2
Views
3K
  • Set Theory, Logic, Probability, Statistics
Replies
1
Views
958
  • Set Theory, Logic, Probability, Statistics
Replies
5
Views
2K
  • Calculus and Beyond Homework Help
Replies
11
Views
1K
  • Differential Geometry
Replies
7
Views
2K
  • General Math
Replies
2
Views
1K
Back
Top