(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

If f is a continuous mapping of a metric space X into a metric space Y, Let E be any subset of X. How to show, by an example, that f([tex]\overline{E}[/tex]) ([tex]\overline{E}[/tex] is the closure of E) can be a proper subset of [tex]\overline{f(E)}[/tex] ? And is there something wrong with my attempt below?

2. Relevant equations

3. The attempt at a solution

If E is compact, [tex]\overline{E}[/tex] = E, f(E) is compact, [tex]\overline{f(E)}[/tex] = f(E). Hence, f([tex]\overline{E}[/tex])= [tex]\overline{f(E)}[/tex]

If E is not compact, [tex]\overline{E}[/tex] is closed and hence is compact, if E is bounded in R^{k}. f([tex]\overline{E}[/tex]) is compact and hence [tex]\overline{f(\overline{E})}[/tex] = f([tex]\overline{E}[/tex]).

since f(E) [tex]\subset{f(\overline{E})}[/tex] , [tex]\overline{f(E)}[/tex] [tex]\subset{\overline{f(\oveline{\overline{E}})}} [/tex] = f([tex]\overline{E}[/tex]). It is also true that f([tex]\overline{E}[/tex]) [tex]\subset{\overline{f(E)}}[/tex]. Hence f([tex]\overline{E}[/tex]) = [tex]\overline{f(E)}[/tex]

In both cases, f([tex]\overline{E}[/tex]) is not a proper subset of [tex]\overline{f(E)}[/tex]

I've no idea of other kind of function that is continuous and with E otherwise defined.

Any hint would be greatly appreciated:)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about continuous function

**Physics Forums | Science Articles, Homework Help, Discussion**