Undergrad Question about Contour Integration

  • Thread starter Thread starter Apogee
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

This discussion focuses on the evaluation of the contour integral of (1/z)dz over the unit circle in the complex plane using Cauchy's Integral Formula. The integral evaluates to 2πi, confirming the consistency of results obtained through different methods, including the substitution method with z(t) = e^(it). The confusion arises when substituting u = e^(it), leading to the same limits of integration (0 and 2π), which incorrectly suggests the integral evaluates to zero. The key takeaway is that the logarithm function is multivalued in complex analysis, and the winding number must be considered when evaluating such integrals.

PREREQUISITES
  • Understanding of complex analysis concepts, specifically contour integration.
  • Familiarity with Cauchy's Integral Formula.
  • Knowledge of multivalued functions, particularly the logarithm in the complex plane.
  • Ability to perform substitutions in integrals, including parametrization of paths.
NEXT STEPS
  • Study the properties of multivalued functions in complex analysis.
  • Learn about the implications of winding numbers in contour integrals.
  • Explore advanced applications of Cauchy's Integral Formula in complex analysis.
  • Investigate the relationship between parametrization and contour integration in complex functions.
USEFUL FOR

Students and professionals in mathematics, particularly those specializing in complex analysis, as well as educators looking to clarify the nuances of contour integration and multivalued functions.

Apogee
Messages
45
Reaction score
1
This question deals specifically with complex analysis.

Let C be the unit circle in the complex plane (|z| = 1). If you calculate the contour integral of (1/z)dz over C using Cauchy's Integral Formula, you get 2*pi*i. If you calculate it using the path z(t)=e^(it), t in [0,2pi], you also receive 2*pi*i.

However, if I do the second method, but make the substitution u = e^(it), the limits of integration (specifically 0 and 2pi) both become 1. Hence, after substitution, the integral is 0. Why is this the case? I imagine that u-substitutions work differently with complex integrals, but I'm trying to understand what is wrong with making this substitution.
 
Physics news on Phys.org
If you use the second method you end up with the integral ##\int_0^{2\pi}i\,dt## which gives ##2\pi i##. If you substitute ##u=e^{it}## in there you'll just get back to the original integral ##\int_C\frac{dz}z##, since ##u=z##. It's not clear why you believe that gives an integral of zero. If you show your working we may be able to show where it goes wrong.
 
Apogee said:
However, if I do the second method, but make the substitution u = e^(it), the limits of integration (specifically 0 and 2pi) both become 1. Hence, after substitution, the integral is 0. Why is this the case?

I assume you mean the following situation:

##\displaystyle\biggr. \oint \frac{1}{z}dz= log(z)\biggr |_1^1=(0+2\pi i)-0=2\pi i##

And that is because the antiderivative is a multi-valued function. So in Complex Analysis, it is not always the case that the integral is zero when the limits "appear" to be the same. One must consider the (analytically-continuous) path along a multivalued antiderivative (if antiderivatives are used) which in general does not return to the same spot over the antiderivative when the path is closed. Now, if you plot the real or imaginary component of the log(z) function and plot an analytically-continuous path along it starting from z=1, wrap around the origin ##2\pi## and go back to 1, you'll see that you end up at a point on the function equal to ##0+2\pi i## or if you just plot the imaginary part of log(z), you'll see that you end up at the point ##2\pi##. So that if you understand this, you can explain why, if the winding number is 2, then we have:

##\displaystyle\biggr. \oint \frac{1}{z}dz= log(z)\biggr |_1^1=4\pi i##

But this is tough to understand I know when seeing for the first time. Better for now to just use the substitution ##z(t)=e^{it}## which is of course an analytically continuous path, then the integral becomes

##\displaystyle \oint \frac{1}{z}dz=\int_0^{2\pi} i dt=2\pi i##
 
Thank you very much! I understand what the issue is now. logz is multivalued. So, though the limits of integration are the same, each results in two different values of the antiderivative. So, the result 2*pi*I is still recovered. :)
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
958
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K