Question about Hermitian matrices

  • Thread starter Bipolarity
  • Start date
  • #1
775
1
I am trying to prove that for any two vectors x,y in ##ℂ^{n}## the product ## \langle x,y \rangle = xAy^{*} ## is an inner product where ##A## is an ##n \times n## Hermitian matrix.

This is actually a generalized problem I created out of a simpler textbook problem so I am not even sure if this is true although I believe it is true.

I proved most of the axioms for an inner product space, except the axiom that ## \langle x,x \rangle > 0 ## if ## x ≠ 0 ##. This is giving me trouble, since I first had to prove that ##<x,x>## is real (which I have done) but am still having trouble to actually prove that it is positive.

Any tips? Thanks!

BiP
 
Last edited:

Answers and Replies

  • #4
22,089
3,293
Ah I see micro! I hadn't gotten there yet in my coursework. Could you give me a counterexample please? thanks.

BiP
It should be very easy for you to find a counterexample. You can even look for a ##1\times 1##-matrix as a counterexample.
 
  • #5
chiro
Science Advisor
4,790
132
Positive definite matrices are defined to give the property you are seeking.

By their definition, xAx' > 0 for all vectors x if A is positive definite and these matrices act like norms and metrics in the way they transform vectors (and are used in situations that have this property like inner products in geometry and variance/co-variance in probability/statistics).
 

Related Threads on Question about Hermitian matrices

  • Last Post
Replies
7
Views
5K
Replies
2
Views
2K
Replies
6
Views
876
  • Last Post
Replies
2
Views
4K
Replies
4
Views
2K
Replies
3
Views
5K
Replies
5
Views
3K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
2K
Replies
1
Views
2K
Top