Question about hollow matrix and diagonalization

Click For Summary
Diagonalizing a hollow matrix, defined as a matrix with zero entries along the diagonal, is possible but depends on the specific matrix. For example, the matrix with entries [[0, 1], [1, 0]] can be diagonalized, while the zero matrix [[0, 0], [0, 0]] is trivially diagonalizable. The discussion highlights that the diagonalizability of hollow matrices is not guaranteed and varies based on their structure. Understanding the characteristics of the matrix is crucial for determining diagonalizability. Overall, the ability to diagonalize hollow matrices is conditional and requires examination of individual cases.
pizzamakeren
Messages
17
Reaction score
0
Homework Statement
A simple question about the topic diagonal matrix and diagonalization.
Relevant Equations
No equations
A quick and simple question. I just realized that this has been posted in the wrong section, but ill give it a try anyway. Does anyone know if it's possible to diagonalize a hollow matrix? What i mean by a hollow matrix is a matrix with only zero entries along the diagonal.
 
Last edited:
Physics news on Phys.org
Why not? Try diagonalizing$$\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}$$and see what you get.
 
Sometimes. It depends on the matrix.
\begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix}
is obviously diagonalizable.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
33
Views
994
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K