- #1

Tkopperl

- 5

- 0

Ok so I'm an engineer and I ran into a physics problem the other day and I'm not quite sure how to go about it. I am very farmiliar with hyrdostatic pressures, but in this particular case I'm not exactly sure how the laws apply.

I have attached a sketch of my problem. There is an 18-3/4" ID main pipe. Inside of this pipe is a plug with a pipe running through the plug with a 6-5/8" OD and 4" ID. There are two water columns that are isolated from each other (The blue and green). The weights of the fluid are Blue = 10 lbs/gal Green = 9.8 lbs/gal

I know that the hydrostatic pressure of the blue fluid at 5000ft will be approximately (10 lbs/gal) x (5000 ft) x (.052) = 2600psi. I know this times the surface area of the top of the plug will give me the force acting downwards on the plug.

My question is in this scenario, what would the force acting upwards on the plug be? Because the smaller pipe opens up into the larger column of fluid how are the hydrostatic pressures affected. This would be like a straw on top of a swimming pool you can't measure the hydrostatic of the bottom of the pool off of the height of the straw.

I hope I have explained this well enough. Thank you in advance for anyone that might help!

Regards,

Travis Bryant

I have attached a sketch of my problem. There is an 18-3/4" ID main pipe. Inside of this pipe is a plug with a pipe running through the plug with a 6-5/8" OD and 4" ID. There are two water columns that are isolated from each other (The blue and green). The weights of the fluid are Blue = 10 lbs/gal Green = 9.8 lbs/gal

I know that the hydrostatic pressure of the blue fluid at 5000ft will be approximately (10 lbs/gal) x (5000 ft) x (.052) = 2600psi. I know this times the surface area of the top of the plug will give me the force acting downwards on the plug.

My question is in this scenario, what would the force acting upwards on the plug be? Because the smaller pipe opens up into the larger column of fluid how are the hydrostatic pressures affected. This would be like a straw on top of a swimming pool you can't measure the hydrostatic of the bottom of the pool off of the height of the straw.

I hope I have explained this well enough. Thank you in advance for anyone that might help!

Regards,

Travis Bryant