lichen1983312
- 85
- 2
I am trying to follow Nakahara's book. From the context, it seems that the author is trying to say if moving a point along a flow always give a isometry, the corresponding vector field X is a Killing vector field. am I right?
then the book gives a proof. It only considers a linear approximation
f:{x^\mu } \mapsto {x^\mu } + \varepsilon {X^\mu }
in each step ignoring terms containing higher orders of \varepsilon
\begin{array}{l}<br /> {g_{\mu \nu }}(x) = \frac{{\partial ({x^\kappa } + \varepsilon {X^\kappa })}}{{\partial {x^\mu }}}\frac{{\partial ({x^\lambda } + \varepsilon {X^\lambda })}}{{\partial {x^\nu }}}{g_{\kappa \lambda }}(x + \varepsilon X)\\<br /> = (\delta _\mu ^\kappa + \varepsilon {\partial _\mu }{X^\kappa })(\delta _\nu ^\lambda + \varepsilon {\partial _\nu }{X^\lambda })[{g_{\kappa \lambda }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x)]\\<br /> \approx (\delta _\mu ^\kappa \delta _\nu ^\lambda + \delta _\mu ^\kappa \varepsilon {\partial _\nu }{X^\lambda } + \varepsilon {\partial _\mu }{X^\kappa }\delta _\nu ^\lambda )[{g_{\kappa \lambda }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x)]\\<br /> \approx \delta _\mu ^\kappa \delta _\nu ^\lambda {g_{\kappa \lambda }}(x) + \delta _\mu ^\kappa \delta _\nu ^\lambda \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x) + \delta _\mu ^\kappa \varepsilon {\partial _\nu }{X^\lambda }{g_{\kappa \lambda }}(x) + \varepsilon {\partial _\mu }{X^\kappa }\delta _\nu ^\lambda {g_{\kappa \lambda }}(x)\\<br /> \approx {g_{\mu \nu }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\mu \nu }}(x) + \varepsilon {\partial _\nu }{X^\lambda }{g_{\mu \lambda }}(x) + \varepsilon {\partial _\mu }{X^\kappa }{g_{\kappa \nu }}(x)<br /> \end{array}
then we obtain the Killing equation
{X^\xi }{\partial _\xi }{g_{\mu \nu }}(x) + {\partial _\nu }{X^\lambda }{g_{\mu \lambda }}(x) + {\partial _\mu }{X^\kappa }{g_{\kappa \nu }}(x) = 0
I feel uncomfortable here because the Killing equation only looks a necessary condition for the equation
{g_{\mu \nu }}(x) = \frac{{\partial ({x^\kappa } + \varepsilon {X^\kappa })}}{{\partial {x^\mu }}}\frac{{\partial ({x^\lambda } + \varepsilon {X^\lambda })}}{{\partial {x^\nu }}}{g_{\kappa \lambda }}(x + \varepsilon X)
to be true, how about the terms contianing higher order of \varepsilon?
then the book gives a proof. It only considers a linear approximation
f:{x^\mu } \mapsto {x^\mu } + \varepsilon {X^\mu }
in each step ignoring terms containing higher orders of \varepsilon
\begin{array}{l}<br /> {g_{\mu \nu }}(x) = \frac{{\partial ({x^\kappa } + \varepsilon {X^\kappa })}}{{\partial {x^\mu }}}\frac{{\partial ({x^\lambda } + \varepsilon {X^\lambda })}}{{\partial {x^\nu }}}{g_{\kappa \lambda }}(x + \varepsilon X)\\<br /> = (\delta _\mu ^\kappa + \varepsilon {\partial _\mu }{X^\kappa })(\delta _\nu ^\lambda + \varepsilon {\partial _\nu }{X^\lambda })[{g_{\kappa \lambda }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x)]\\<br /> \approx (\delta _\mu ^\kappa \delta _\nu ^\lambda + \delta _\mu ^\kappa \varepsilon {\partial _\nu }{X^\lambda } + \varepsilon {\partial _\mu }{X^\kappa }\delta _\nu ^\lambda )[{g_{\kappa \lambda }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x)]\\<br /> \approx \delta _\mu ^\kappa \delta _\nu ^\lambda {g_{\kappa \lambda }}(x) + \delta _\mu ^\kappa \delta _\nu ^\lambda \varepsilon {X^\xi }{\partial _\xi }{g_{\kappa \lambda }}(x) + \delta _\mu ^\kappa \varepsilon {\partial _\nu }{X^\lambda }{g_{\kappa \lambda }}(x) + \varepsilon {\partial _\mu }{X^\kappa }\delta _\nu ^\lambda {g_{\kappa \lambda }}(x)\\<br /> \approx {g_{\mu \nu }}(x) + \varepsilon {X^\xi }{\partial _\xi }{g_{\mu \nu }}(x) + \varepsilon {\partial _\nu }{X^\lambda }{g_{\mu \lambda }}(x) + \varepsilon {\partial _\mu }{X^\kappa }{g_{\kappa \nu }}(x)<br /> \end{array}
then we obtain the Killing equation
{X^\xi }{\partial _\xi }{g_{\mu \nu }}(x) + {\partial _\nu }{X^\lambda }{g_{\mu \lambda }}(x) + {\partial _\mu }{X^\kappa }{g_{\kappa \nu }}(x) = 0
I feel uncomfortable here because the Killing equation only looks a necessary condition for the equation
{g_{\mu \nu }}(x) = \frac{{\partial ({x^\kappa } + \varepsilon {X^\kappa })}}{{\partial {x^\mu }}}\frac{{\partial ({x^\lambda } + \varepsilon {X^\lambda })}}{{\partial {x^\nu }}}{g_{\kappa \lambda }}(x + \varepsilon X)
to be true, how about the terms contianing higher order of \varepsilon?