MHB Question about Linear Dependency

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Linear
Yankel
Messages
390
Reaction score
0
which one of the next statements is the correct one ?

Let v,u,w be linearly dependent vectors in a vector space over R.

u1 = 2u
v1 = -3u+4v
w1 = u+2v-aw (a scalar from R)

(1) the vectors u1, v1 and w1 are linearly dependent for every value of a
(2) the vectors u1, v1 and w1 are linearly independent for every value of a
(3) the vectors u1, v1 and w1 are linearly independent for every value of a apart from 0
(4) the vectors u1, v1 and w1 are linearly independent for every positive value of a
(5) there exists a value of a for which the vectors u1, v1 and w1 are linearly independent

Thanks a lot !
 
Physics news on Phys.org
Yankel said:
which one of the next statements is the correct one ?

Let v,u,w be linearly dependent vectors in a vector space over R.

u1 = 2u
v1 = -3u+4v
w1 = u+2v-aw (a scalar from R)

(1) the vectors u1, v1 and w1 are linearly dependent for every value of a
(2) the vectors u1, v1 and w1 are linearly independent for every value of a
(3) the vectors u1, v1 and w1 are linearly independent for every value of a apart from 0
(4) the vectors u1, v1 and w1 are linearly independent for every positive value of a
(5) there exists a value of a for which the vectors u1, v1 and w1 are linearly independent

Thanks a lot !

This is somewhat similar to the last one. Again, we know that $u,v,w$ are dependent, implying that there are constants $c_1,c_2,c_3$ not all zero such that $c_1u+c_2v+c_3w=0$. Now, we want to analyze when the following is true:

\[d_1u_1+d_2v_1+d_3w_1=0\]

where $d_1,d_2,d_3\in\mathbb{R}$ are arbitrary constants. The idea now is to express the above equation in terms of a linear combination of just $u,v,w$, then use the fact that $u,v,w$ are linearly dependent to come up with the appropriate conclusion.

I hope this helps!
 
right, so if I am not mistaken I get:

(2d1-3d2+d3)u + (-4d2+2d3)v + (-ad3)w = 0

what does it tells me ? I know that at least one of the coefficients is not zero, because u,v and w are dependent...what can I say about u1,v1,w1 and what about a ?
 
i think focusing on the coefficients overmuch is a mistake.

it is clear that:

$\{u_1,v_1,w_1\} \subset \text{Span}(\{u,v,w\})$.

since {u,v,w} is linearly dependent, this has dimension ≤ 2.

therefore $u_1,v_1,w_1$ cannot be linearly independent, else we have a subspace of greater dimension than a space which contains it.

("a" is a red herring).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top