Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Question about the concept of divergente

  1. Aug 20, 2010 #1
    First I need to post some pages of a book that I'm reading...

    [PLAIN]http://img824.imageshack.us/img824/5153/42785753.png [Broken] [Broken]

    [PLAIN]http://img824.imageshack.us/img824/5153/42785753.png [Broken] [Broken]

    EQ 34
    [PLAIN]http://img525.imageshack.us/img525/2407/49364360.png [Broken]

    Now I have some questions...

    1. Why do the supposed scalar functions of vector function F depends on x, y and z? We have Fx(x,y,z), why does it depend on x, y and z? It should depend just on x, shouldn't it?

    2. "Whether some other shape will yield the same limit is a question we must face later.". What limit is he talking about? Did he say that because these two equations are equivalent? [PLAIN]http://img801.imageshack.us/img801/2570/15683468.png [Broken]

    3. Why does the flux through the two faces he's considering depends only on the z component? It should depend on x and y (because the top and the bottom faces are in the xy-plane), shouldn't it? I'm confused ;S

    4. What is Fz representing here? The flux through the faces? ;S

    5. I understand that the difference between the flux at the top face and the flux at the top face is the net flux through these faces. But why the net flux is the difference between the averages of the flux in the two faces? Shouldn't it be only the difference between the TOTAL flux of the top face and the TOTAL flux of the bottom face?

    6. Why the net flux is equal to [tex]\frac{\partial F_{z}}{\partial z} \Delta z[/tex]?

    7. What does he mean "first-order variation of Fz"?

    I have more questions but I think if I get the answer the these first I may understand the others...

    I know that are too many questions but I really need to understand the concept of divergence...

    If someone could help me I would be grateful...

    Thank you,
    Rafael Andreatta
    Last edited by a moderator: May 4, 2017
  2. jcsd
  3. Aug 20, 2010 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    A vector field is a function that assigns a vector to every point in space. So at every point in the 3D Cartesian coordinate space i.e. at every coordinate triplet (x,y,z), we have a vector F that has some magnitude and some direction. In general, this vector F changes from one point to another. We say that the vector is a function of position, which means in this case that it is a function of three independent variables.

    You seem to be confusing this functional dependence of vector F (represented by the arguments in parentheses) with the decomposition of vector F into three orthogonal components (represented by the subscripts), namely Fx, Fy, and Fz. These are two different things. In general, if I go from one point in space (position 1) to another point (position 2), the vector F will change in both magnitude and direction, so that in general the three components of the vector will be each be different at position 2 from what they were at position 1. I hope this makes it clear that all three vector components can vary from place to place. They are each functions of position: Fx(x,y,z), Fy(x,y,z), Fz(x,y,z).

    As a concrete example, if you go to coordinate point (1, 3, 8), the x-component of vector F might be equal to 2, but if you go to some other coordinate point, like (1, 6, 12), the x-component would have a totally different value, like maybe, 24. So:

    Fx(1, 3, 8) = 2
    Fx(1, 6, 12) = 24

    When you say that Fx should depend only on x, you are requiring that Fx be constant over any given yz-plane. There is no reason why this condition needs to be true, and in general, it isn't.
    Last edited: Aug 20, 2010
  4. Aug 20, 2010 #3
    Thank you very much for the reply, now I understand why they depends on x,y and z...

    But I still need help with the other questions...
  5. Aug 23, 2010 #4
    I would be grateful is someone could help me...
  6. Aug 25, 2010 #5


    User Avatar
    Science Advisor


    Last edited by a moderator: May 4, 2017
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook