A Question about Weinberg Book QFT1 (5.1.13)

  • A
  • Thread starter Thread starter PRB147
  • Start date Start date
  • Tags Tags
    Book Weinberg
Click For Summary
The discussion centers on the derivation of equation (5.1.13) from Weinberg's Quantum Field Theory text, specifically addressing the transformation of integrals when changing variables from p to Λp. A key point of contention is the appearance of an extra factor, which leads to a discrepancy in the expected results. Participants clarify that the extra factor is indeed included in Weinberg's derivation, as referenced on page 194 of the text. The conversation emphasizes the importance of correctly handling variable changes in integrals to maintain consistency with the equations presented in the book. Ultimately, the participants agree on the correct interpretation of the equations and the role of the extra factor in the derivation process.
PRB147
Messages
122
Reaction score
0
TL;DR
I cannot derive Weinberg book QFT volume 1, (5.1.13), please help.
According to (5.1.6)
$$U_0(\Lambda,a)\psi_\ell^+(x)U^{-1}_0(\Lambda,a)=\sum\limits_{\ell \bar{\ell}}D_{ \ell \bar{\ell} }(\Lambda^{-1})\psi^+_{\bar{\ell}}(\Lambda x+a).$$ (5.1.6)
According to definition 5.1.4:
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3{\bf p
} u_\ell(\Lambda x+a;{\bf{p}},\sigma,n)a({\bf{p}},\sigma,n)$$
If we change the integral variable $${\bf p}\rightarrow \Lambda {\bf p}$$ and using Lorentz invariant $$d^3{\bf p}={p_0}{\frac{d^3(\Lambda {\bf p})}{(\Lambda p)^0}}$$, then,
$$\psi^+_{\bar{\ell}}(\Lambda x+a)=\sum\limits_{\sigma n}\int d^3(\Lambda {\bf p}) \left(\frac{p_0}{(\Lambda
p)^0}\right)u_\ell(\Lambda x+a;\Lambda{\bf{p}},\sigma,n)a(\Lambda{\bf{p}},\sigma,n)$$
If the above relation is correct, then I cannot derive equation (5.1.13).
Because of the extra factor below $$\left(\frac{p_0}{(\Lambda
p)^0}\right)$$.
It is this factor that made me perplexed, this extra factor make my derivation be different from (5.1.13), my result is $$\sqrt{\left(\frac{(\Lambda
p)^0}{p_0}\right)}$$ instead of $$\sqrt{\left(\frac{p_0}{(\Lambda
p)^0}\right)} \textrm{in book (5.1.13).}$$
 
Last edited:
Physics news on Phys.org
Try to read the latex guide
Edit: looks better now, thanks
 
Last edited:
As far as I can tell this extra factor is correct and included in Weinberg‘s derivation (in my edition it is mentioned at the top of p. 194, and is then included in the unnumbered equations before (5.1.13)). Do you agree with those? You have an extra

##\sqrt{(\Lambda p)^0/p^0}##

from (5.1.11), so overall you have ##\sqrt{p^0/(\Lambda p)^0}##.

Is your actual problem maybe deriving (5.1.13) from the unnumbered ones immediately prior to it (which include your extra factor)?
 
  • Like
Likes PRB147 and malawi_glenn
Dr.AbeNikIanEdL said:
As far as I can tell this extra factor is correct and included in Weinberg‘s derivation (in my edition it is mentioned at the top of p. 194, and is then included in the unnumbered equations before (5.1.13)). Do you agree with those? You have an extra

##\sqrt{(\Lambda p)^0/p^0}##

from (5.1.11), so overall you have ##\sqrt{p^0/(\Lambda p)^0}##.

Is your actual problem maybe deriving (5.1.13) from the unnumbered ones immediately prior to it (which include your extra factor)?
Thank you very much for your quick reply, as you know the unnumbered equation in page 194 closely below the sentence "it is necessary and sufficient that" is obtained from 5.1.6 and 5.1.11. the left hand side of this unnumbered equation can be derived from 5.1.6 and above here, while the right hand side from 5.1.11. However, in both sides, there exists the same integral ##\int d^3\bf{p}##, so, both sides need to change to ##\int d^3(\Lambda {\bf p})##.
So, both sides produce an extra factor ##p^0/(\Lambda p)^0##, leading to an inconsistency withthe book. Alternatively speaking, the factor on the right side should be ##\sqrt{(\Lambda p)^0/p_0}##, which is the inverse of the factor in 5.1.13.
 
Last edited:
Ah, no for the left hand side there is not change of variables, just a renaming. You can write equation (5.1.4) as

## \Psi^+_l(x) = \sum_{\sigma,n} \int d^3(\Lambda p) u_l(x;\mathbb{p}_\Lambda,\sigma,n)a(\mathbb{p}_\Lambda,\sigma,n) ##

by just renaming the integration variable. Note also the arguments of ##u_l## and ##a## changed to ##\mathbb{p}_\Lambda##, and indeed that is also the argument of ##u## on the left hand side in the unnumbered equation. If you do the transformation, the arguments would not change and nothing like (5.1.13) would follow since the argument of ##a## for example would also not match.
 
  • Like
Likes PRB147, vanhees71 and malawi_glenn
Thank you! Yes, you are right.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...