MHB Question from Kamal about Gaussian Elimination via email

AI Thread Summary
Kamal struggled with a textbook problem requiring Gaussian elimination to solve a system of equations. He expected the value of z to be 2 but consistently obtained larger numbers. The correct solution, derived through Gaussian elimination, shows that z equals -49, y equals -124, and x equals -14. The calculations involved setting up an augmented matrix and performing row operations to eliminate variables systematically. The thread concluded with the correct solution confirmed through substitution into the original equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
HI Sir,
I was having a bit of trouble with a question from the textbook. I have tried it multiple times with different methods and keep getting a different answer. The question wants us to solve it using Gaussian elimination.

2x+y−3z=−5
x − y + 2z = 12
7x − 2y + 3z = 3

The answer for Z is meant to be 2 but i keep getting bigger numbers for Z.

Thanks, Kamal

I'm not sure where you're getting the idea that z = 2, as this is not correct.

I'm assuming this is to be done without pivoting...

Set up your augmented matrix:

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 1 & -1 & \phantom{-}2 & 12 \\ 7 & -2 & \phantom{-} 3 & \phantom{-}3 \end{matrix} \right] \end{align*}$

As we have to use Gaussian Elimination, we will use multiples of Row 1 to eliminate the terms under the main diagonal in the first column. So apply Row 2 - 1/2 Row 1 to Row 2 and Row 3 - 7/2 Row 1 to Row 3.

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 1 & -3 & -5 \\ 1 - 1 & -1 - \frac{1}{2} & 2 - \left( -\frac{3}{2} \right) & 12 - \left( -\frac{5}{2} \right) \\ 7 - 7 & -2 - \frac{7}{2} & 3 - \left( -\frac{21}{2} \right) & 3 - \left( -\frac{35}{2} \right) \end{matrix} \right] &= \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 & -\frac{11}{2} & \phantom{-}\frac{27}{2} & \phantom{-}\frac{41}{2} \end{matrix} \right] \end{align*}$

Now we have to use multiples of Row 2 to eliminate the term under the main diagonal in the second column. So we will have to apply Row 3 - 11/3 Row 2 to Row 3.

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 + 0 & -\frac{11}{2} - \left( -\frac{11}{2} \right) & \frac{27}{2} - \frac{77}{6} & \frac{41}{2} - \frac{319}{6} \end{matrix} \right] &= \left[ \begin{matrix} 2 & \phantom{-}1 & -3 & -5 \\ 0 & -\frac{3}{2} & \phantom{-}\frac{7}{2} & \phantom{-}\frac{29}{2} \\ 0 & \phantom{-}0 & \phantom{-}\frac{2}{3} & -\frac{98}{3} \end{matrix} \right] \end{align*}$

From here we can see that

$\displaystyle \begin{align*} \frac{2}{3} \,z &= -\frac{98}{3} \\ z &= -49 \end{align*}$.

Back substitution yields

$\displaystyle \begin{align*} -\frac{3}{2}\,y + \frac{7}{2}\,z &= \frac{29}{2} \\ -\frac{3}{2}\,y + \frac{343}{2} &= \frac{29}{2} \\ -\frac{3}{2}\,y &= -\frac{372}{2} \\ y &= -124 \end{align*}$

Back substitution again yields

$\displaystyle \begin{align*} 2\,x - y - 3\,z &= -5 \\ 2\,x - 124 + 147 &= -5 \\ 2\,x + 23 &= -5 \\ 2\,x &= -28 \\ x &= -14 \end{align*}$

So the solution to your system is $\displaystyle \begin{align*} \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] = \left[ \begin{matrix} -14 \\ -124 \\ -49 \end{matrix} \right] \end{align*}$. Substitution into any of your original equations will verify this to be correct.
 
Mathematics news on Phys.org
Seems the thread has lost its OP. I will therefore close it.
 
  • Like
Likes Wrichik Basu
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top