Question in finding Green's function

Click For Summary
The discussion focuses on finding Green's function for Poisson's equation in a rectangular region with zero boundary conditions. It outlines the derivation of the solution using double series involving sine functions and the Laplacian operator. Key points include the independence of the Laplacian from the summation indices and the distinction between the dependence of the coefficients E_{mn} and λ_{mn} on those indices. The conversation emphasizes that while the Laplacian is independent of the summation indices, it remains a function of x and y. This understanding is crucial for correctly manipulating the sums in the context of the problem.
yungman
Messages
5,741
Reaction score
294
Consider ##\nabla^2 u(x,y)=f(x,y)## in rectangular region bounded by (0,0),(0,b),(a,b)(a,0). And ##u(x,y)=0## on the boundary. Find Green's function ##G(x,y,x_0,y_0)##.

For Poisson's eq, let
u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\sin\left(\frac{m\pi}{a}x_0\right)\sin\left(\frac{n\pi}{b}y_0\right)
\Rightarrow\;\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)
\hbox{Where}\;\lambda_{mn}=(\frac{m\pi}{a})^2+(\frac {n\pi}{b})^2
Skipping a few steps:

E_{mn}=-\frac{4}{ab\lambda_{mn}}\int_0^a\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\;dydx

\Rightarrow\;u(x_0,y_0)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn} \sin\left(\frac{m\pi}{a}x_0\right) \sin\left(\frac{n\pi}{b}y_0\right)= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[- \frac{4}{ab\lambda_{mn}}\int_0^b\int_0^b \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{a}x\right) \;dydx \right] \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)

For Poisson eq with zero boundary
u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx
\Rightarrow\;u(x_0,y_0)=\frac{1}{2\pi}\int_0^a\int_0^b\; \nabla^2 u\;G(x,y,x_0,y_0)\;dydx= \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \left[\left(-\frac{4}{ab\lambda_{mn}}\int_0^b\int_0^a \nabla^2 u\;\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \;dydx\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right) \right]

=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \int_0^b \int_0^a \nabla^2 u\;\frac{-4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)dydx\; \hbox{ (1)}


The book gave the next step:

u(x_0,y_0)=\int_0^a\int_0^b\; \nabla^2u \left[ \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}-\frac{4}{ab\lambda_{mn}}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\sin\left(\frac{m\pi}{a}x_0\right)\;\sin\left(\frac{n\pi}{b}y_0\right)\right] \;dydx \;\hbox{ (2)}

Compare (1) and (2) above, How can you move the ##\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}## inside the integral and pass ##\nabla^2u## where
\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)
 
Last edited by a moderator:
Physics news on Phys.org
##m## and ##n## are dummy indices. The two sums, i.e., the one in the equation of ##\nabla^2 u## and the one in the equation for ##u(x_0,y_0)## are distinct. Changing ##m## and ##n## to ##m'## and ##n'## or ##k## and ##l## in the equation for ##\nabla^2 u## will not change the result.

Therefore, in the equation for ##u(x_0,y_0)##, ##\nabla^2 u## is independent of ##m,n## and can be taken outside the summation.
 
DrClaude said:
##m## and ##n## are dummy indices. The two sums, i.e., the one in the equation of ##\nabla^2 u## and the one in the equation for ##u(x_0,y_0)## are distinct. Changing ##m## and ##n## to ##m'## and ##n'## or ##k## and ##l## in the equation for ##\nabla^2 u## will not change the result.

Therefore, in the equation for ##u(x_0,y_0)##, ##\nabla^2 u## is independent of ##m,n## and can be taken outside the summation.

But ##E_{mn}## and ##\lambda_{mn}## is dependent on ##m,n##.

as##\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) ##
Thanks
 
yungman said:
But ##E_{mn}## and ##\lambda_{mn}## is dependent on ##m,n##.

as##\nabla^2 u=-\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}E_{mn}\lambda_{mn}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) ##
Thanks
And that is why there is a sum over ##m## and ##n## in there. But ##\nabla^2 u## is a function of ##x## and ##y## only. If you are still confused, just write
$$
\nabla^2 u=-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}E_{ij}\lambda_{ij}\sin\left(\frac{i\pi}{a}x\right)\sin\left(\frac{j\pi}{b}y\right)
$$
 
DrClaude said:
And that is why there is a sum over ##m## and ##n## in there. But ##\nabla^2 u## is a function of ##x## and ##y## only. If you are still confused, just write
$$
\nabla^2 u=-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}E_{ij}\lambda_{ij}\sin\left(\frac{i\pi}{a}x\right)\sin\left(\frac{j\pi}{b}y\right)
$$

Thanks
So what you are saying

##\nabla^2 u=-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}E_{ij}\lambda_{ij}\sin\left(\frac{i\pi}{a}x\right)\sin\left(\frac{j\pi}{b}y\right)##

is just one big lump totally independent to the summation of (m,n). So far as the whole function, ##\nabla^2u## is a constant.
 
yungman said:
Thanks
So what you are saying

##\nabla^2 u=-\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}E_{ij}\lambda_{ij}\sin\left(\frac{i\pi}{a}x\right)\sin\left(\frac{j\pi}{b}y\right)##

is just one big lump totally independent to the summation of (m,n). So far as the whole function, ##\nabla^2u## is a constant.

Independent of the indices of the summation, yes, but still dependent on ##x## and ##y##. (It is the Laplacian of a function ##u(x,y)##, after all.)
 
  • Like
Likes 1 person

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K